
Input Range Generation for Compiler-Induced
Numerical Inconsistencies

Dolores Miao
University of California, Davis

United States of America
wjmiao@ucdavis.edu

Ignacio Laguna
Lawrence Livermore National

Laboratory
United States of America

ilaguna@llnl.gov

Cindy Rubio-González
University of California, Davis

United States of America
crubio@ucdavis.edu

ABSTRACT

Compiler-induced numerical inconsistencies present a significant
challenge when testing and verifying numerical software—they
can arise in a variety of situations, such as when porting code to
a new platform or when using a different compiler or optimiza-
tion flag. While existing tools can identify the source code location
that induce an inconsistency for a specific input, no techniques are
available to find input ranges where inputs that trigger these incon-
sistencies exist. In this paper, we propose a multi-phase approach
to detect unknown input ranges that induce such inconsistencies;
we call them inconsistency-inducing inputs. Our approach combines
input-partitioned and coverage-based input sampling, input clus-
tering, and optimization algorithms. We implement our approach
in the tool CIGEN, which finds inputs that trigger high compiler-
induced inconsistencies in numerical programs and outputs a list of
input ranges containing such inconsistency-inducing inputs. Our
experimental evaluation show 53.4% improvement over the state
of the art in finding inputs that trigger compiler-induced inconsis-
tencies in 175 GNU Scientific Library (GSL) functions. We further
examine a subset of the inconsistencies and discuss their character-
istics and possible root causes.

CCS CONCEPTS

•Mathematics of computing→ Mathematical software; • Soft-
ware and its engineering→ Software verification and vali-

dation; Compilers; Software reliability; Software testing and

debugging.

KEYWORDS

input generation, software testing, floating-point arithmetic, com-
piler optimizations, numerical reliability, reproducibility, numerical
software

ACM Reference Format:

DoloresMiao, Ignacio Laguna, and Cindy Rubio-González. 2024. Input Range
Generation for Compiler-Induced Numerical Inconsistencies. In Proceedings
of the 38th ACM International Conference on Supercomputing (ICS ’24), June
04–07, 2024, Kyoto, Japan. ACM, New York, NY, USA, 12 pages. https://doi.
org/10.1145/3650200.3656618

This work is licensed under a Creative Commons Attribution International
4.0 License.

ICS ’24, June 04–07, 2024, Kyoto, Japan
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0610-3/24/06
https://doi.org/10.1145/3650200.3656618

1 INTRODUCTION

Testing scientific and high-performance computing (HPC) software
involves verifying that numerical calculations are correct and re-
producible under various inputs. A significant challenge that arises
when testing numerical software is compiler-induced numerical in-
consistencies. These inconsistencies impact numerical results and
manifest themselves in several situations, for example, when code
is ported between different platforms such as from CPUs to GPUs
or between different GPUs [11], or when using different compilers
and/or compiler optimizations [12].

Since compilers have significant freedom when generating
floating-point code—particularly when -ffast-math or other flags
are used—operations can be re-ordered and/or replaced in different
ways, which induce such numerical inconsistencies. Such behav-
ior is not limited to programs in native programming languages
such as C/C++, and may in fact affect high-level languages and
libraries that are built on top of them, as shown in [7]. When such
inconsistencies emerge, they decrease programming productivity
as they can be tricky to debug and understand. For example, Guo
et al. [12] describe a case where scientists at the Lawrence Liv-
ermore National Laboratory (LLNL) observed a compiler-induced
numerical inconsistency in a real-world hydrodynamics application,
Laghos [2]. The inconsistency, which is triggered with the IBM XL
C/C++ compiler when using the -O3 optimization flag, took several
weeks to be diagnosed.

Previous research studied the question of how to diagnose such
inconsistencies for a specific input, and has developed tools to
find the code segments in a program that cause inconsistencies.
FLiT [23] identifies the CPU function in a program that is impacted
by the inconsistency; pLiner [12] can identify the function and line
of code in a CPU program; Ciel [17] isolates the function, code
line, and expression in a heterogeneous program (CPU and GPU)
that is associated with the inconsistency. The main limitation of
such tools is that they can only diagnose the inconsistency location
for a specific input 𝑖 out of all the program inputs 𝐼—usually 𝑖 is
given by the programmer to the tool and it is confirmed that an
inconsistency occurs for 𝑖 between a specific set of compiler and
its optimization flag combinations.

A more general set of questions to ask are: Given a program
P, what inputs 𝑗, 𝑘, . . . ∈ 𝐼 , in addition to 𝑖 , also activate compiler-
induced numerical inconsistencies, and how do we find such inputs
for P? For all the inputs in 𝐼 that we know induce inconsisten-
cies, which input induces the largest inconsistency (or error)? As
HPC code is ported and tested in different environments, these
are crucial questions to answer—having a better understanding
of the inputs that cause such inconsistencies and the error they

https://doi.org/10.1145/3650200.3656618
https://doi.org/10.1145/3650200.3656618
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3650200.3656618

ICS ’24, June 04–07, 2024, Kyoto, Japan Miao et al.

introduce, helps programmers better address such inputs in testing
campaigns, effectively safeguard their programs against these in-
consistencies, and produce more accurate code. Additionally, some
of these compiler-induced inconsistencies, when triggered by edge
cases, may expose unintended or undefined behavior in the hard-
ware/software systems.

Recently, CIV [28] addressed a similar question—finding an input
which triggers high compiler-induced numerical inconsistencies
in programs. However, CIV is limited to finding one inconsistency-
inducing input, not input ranges, and its requirement of comparing
LLVM IR-based instruction traces limits their use when it comes to
compilers not built on LLVM.

Main Contributions. In this paper, we present CIGEN (a combi-
nation of Compiler-induced Inconsistencies and Input Generation),
which is a tool that finds input ranges that cause high compiler-
induced inconsistencies in numerical programs. Given the observed
characteristics of compiler-induced inconsistencies in numerous
routines (as discussed in Section 2), we propose a multi-phase ap-
proach: first CIGEN performs input-partitioned and coverage-based
random sampling to gather an initial set of input points that cause
inconsistencies; CIGEN then groups these input points into clusters,
and generates non-tight input ranges that cause compiler-induced
inconsistencies; then in the last phase, CIGEN employs dense sam-
pling of input values, in addition to running differential evolution
(DE) [6] in each input range, so that the inconsistency characteris-
tics in these ranges are discovered.

We evaluate CIGEN on a set of 175 GNU Scientific Library
(GSL) [9] functions. We first evaluate the effectiveness and effi-
ciency of CIGEN in finding inputs that maximize compiler-induced
numerical inconsistencies, which enables a direct comparison with
the state of the art in generating inputs that maximize numeri-
cal inconsistencies, CIV [28], and Binary Guided Random Testing
(BGRT) [3], which is an earlier algorithm, originally designed to
find inputs that cause high precision errors. CIGEN compares fa-
vorably against CIV and BGRT in terms of the number of functions
found with inputs that trigger high compiler-induced inconsistency,
with 53.4% more functions than CIV (125 vs. 81) and 525% more
than BGRT (125 vs. 20). CIGEN also compares favorably in terms
of running time usage and result stability. In addition, CIGEN also
finds between 1 to 102 candidate input ranges for these 175 func-
tions in which inputs that cause compiler-induced inconsistencies
are found, and we have discussed the characteristics of some of
these candidate input ranges. We also use CIGEN and a state-of-
the-art compiler-induced inconsistency isolation tool, Ciel [17], to
investigate these candidate input ranges and the different source
code locations that triggers them.

In summary, the contributions of this paper are as follows:

• A multi-phase approach for finding input ranges with inputs
that cause significant compiler-induced numerical incon-
sistencies in a program, combining input-partitioned and
coverage-based random input sampling, input sample clus-
tering, and differential evolution (Section 3).
• A platform and compiler independent implementation of
our approach in the tool CIGEN. Users provide as input
a program with floating-point inputs and a floating-point
output, and CIGEN outputs a number of ranges in the input

1 2 4 8 16 32

Figure 1: Density of floating-point numbers between 1-32.

domain, each with statistics of inputs that cause compiler-
induced inconsistencies within the input range.
• An evaluation on 175 functions from the GNU Scientific Li-
brary that shows that CIGEN compares favorably against
the state of the art in terms of the number of functions found
with inputs that trigger high compiler-induced inconsistency,
time usage, and result stability against indeterminacy (Sec-
tions 4.2 to 4.3).
• An investigation into characteristics of inconsistency-
inducing inputs found by CIGEN, and into the difference
in source code that causes these compiler-induced numerical
inconsistencies (Section 4.4).

2 BACKGROUND AND PROBLEM OVERVIEW

2.1 Floating-Point Types and Arithmetic

Floating-point types split bits allocated for the type into three
fixed-point numbers: a sign 𝑠 which is either 0s or 1, an exponent
𝑒 which is used as an integer directly, and a mantissa which is
then converted to a dyadic fractional number 𝑓 that is between
0.0 and 1.0. Different floating-point types use a variety of bits for
exponent and mantissa. For example, an IEEE 754-2008 compliant
64-bit floating-point number is represented by a 1-bit sign, 11-
bit exponent, and 52-bit mantissa. The real value of a 64-bit float
number is calculated by the following equation:

𝑓 𝑙𝑜𝑎𝑡64 (𝑠, 𝑓 , 𝑒)
{
(1 − 2𝑠) (1 + 𝑓)2(𝑒−1024) if 0 < e < 2047
(1 − 2𝑠) 𝑓 2(𝑒−1024) if e = 0

(1)

The set of possible 64-bit floating-point values are discontinuous
values between −1.79𝑒 + 308 and +1.79𝑒 + 308 and is called FP64 in
this paper. In general, we will use FP to represent a non-specific
set of floating-point numbers in this paper. The equation in (1)
varies depending on the exponent; when the exponent is zero, the
corresponding floating-point number is subnormal.

An important property of a floating-point type is its logarithmic
distribution. It is indicated from Figure 1 that (a) small floating-point
numbers are more dense than large numbers; and (b) the amount of
unique floating-point numbers between two floating-point numbers
are measured in logarithmic terms.

2.2 Calculating Numerical Inconsistency

It is important to establish a standard in how we calculate incon-
sistencies between outputs from two program variants. Since both
outputs are of limited precision, metrics from comparing one lim-
ited precision number to an infinite precision counterpart, such as
relative error or even unit in last place error (ulp error) does not
accurately show the extent of the inconsistencies. Therefore we
follow the method used in Herbie [20], originally from STOKE [24],
where we simply calculate the amount of floating-point numbers

Input Range Generation for Compiler-Induced Numerical Inconsistencies ICS ’24, June 04–07, 2024, Kyoto, Japan

-4e+31 -4e+25 -4e+19 -4e+13 -3e+07 -3e+01 -3e-05

16

32

48

64

Program Input

In
co
ns
ist
en
cy

Er
ro
r

Figure 2: A subset of sampled inputs for the GSL function

gsl_sf_Airy_Ai and the inconsistency error they have in-

duced. A Red dot is an input that does not trigger inconsis-

tency, while a green dot is an input that does. All negative

input values outside of the plot have an inconsistency error

of zero and are thus omitted.

Table 1: Inconsistency error when at least one of the values

is a special value.

baseline (x) other (y) inconsistency
inf or NaN any 0.0
normal values +/-inf E(x, y)
normal values +/-NaN E(x, +/-inf)

between the two outputs, then get its base-2 logarithm. We call it
inconsistency error.

E(𝑥,𝑦) = 𝑙𝑜𝑔2 |{𝑧 ∈ FP|𝑚𝑖𝑛(𝑥,𝑦) ≤ 𝑧 ≤ 𝑚𝑎𝑥 (𝑥,𝑦)}| (2)

Under this equation, the maximum inconsistency error possible
for FP64 is E(1.79𝑒 + 308,−1.79𝑒 + 308) = 63.99. Additionally, how
inconsistency errors are calculated when either 𝑥 or 𝑦 is a special
value such as inf or NaN is shown in Table 1. Note that there is a
baseline column in the table, even though unlike precision error
calculation in tools such as Herbie, there does not exist a baseline
calculated with infinite precision when calculating inconsistency
error between two numbers; though in practice, we may still define
a certain compiler and optimization flag combination as baseline to
determine the degree of an inconsistency.

In this paper we use clang -O0 as baseline. We choose this
specification for two reasons: first, if the baseline result is a special
number, the function input domain likely does not include the
current input, thus the inconsistency from the current input is
not of practical concern; second, NaN values usually result from
instructions with inf as operands, therefore it is fair to treat them
as inf when calculating inconsistency errors.

2.3 Compiler-Induced Numerical Inconsistency

A compiler-induced numerical inconsistency is an inconsis-
tency shown in output values that come from running pro-
grams compiled from the same source code under different com-
pilers and/or optimization flags. An example of a real-world
function is the gsl_sf_Airy_Ai() GSL function. With input

−973569893418508.1, if compiled with clang -O0, the return value
would be −6.314246267753519𝑒 + 77; but if compiled with clang
-O3 the return value would be 0.00010100276891802863. The incon-
sistency error introduced here is 63.161, which is very large.

Next, we formally define compiler-induced numerical incon-
sistency in terms of input. Suppose we have two floating-point
representations of the same function under two different compil-
er/optimization flag combinations, one baseline 𝑦0 = 𝑓0 (𝑥), one
𝑦𝑜𝑝𝑡 = 𝑓𝑜𝑝𝑡 (𝑥). Then, we can define an inconsistency function with
an input 𝑥 as follows:

𝐼𝑛𝑐 𝑓 (𝑥) = E(𝑓0 (𝑥), 𝑓𝑜𝑝𝑡 (𝑥)) (3)
Therefore, to study the characteristics of compiler-induced nu-

merical inconsistencies is to study the characteristics of 𝐼𝑛𝑐 𝑓 (𝑥)
itself; to find an input 𝑥 that maximizes compiler-induced inconsis-
tency is to find a local or global maximum of 𝐼𝑛𝑐 𝑓 (𝑥).

During our preliminary research, we found that 𝐼𝑛𝑐 𝑓 (𝑥) func-
tions may exhibit complex characteristics. As an example, we com-
pile the GSL function gsl_sf_Airy_Ai() with clang -O0 and
clang -O3 -ffast-math separately into two binaries, run both
with 25,000 randomly generated inputs from the [−∞, 0] input do-
main, and calculated the inconsistency error triggered by each input.
First we observe that for all sampled inputs, except for the input
range shown in Figure 2, 𝐼𝑛𝑐 𝑓 (𝑥) is zero. This makes finding at
least one input that causes inconsistency a prerequisite of finding
input ranges that contain high inconsistency errors. Second, when
we focus on inputs in the range [-1e-30, -1e-8] and the inconsis-
tency errors they trigger which is shown in Figure 2, it is evident
that the inconsistency function has numerous local minimums and
maximums, and thus difficult to express in polynomial terms; sim-
ply employing widely used global optimization strategies such as
Bayesian Optimization (BO) [18] or Markov Chain Monte Carlo
(MCMC) [10] on the whole input domain may not be suitable for
functions like this. Lastly, when the input value is around -3e+1,
there is no clear boundary where all inputs inside the boundary
cause inconsistencies, and all inputs outside the boundary cause
no inconsistencies. This means that defining a clear-cut boundary
with a limited number of samples is difficult.

To better address the characteristics of inconsistency functions
as shown above, we propose a novel, multi-phase method to study
the characteristics of compiler-induced inconsistencies which will
be discussed in Section 3.

3 TECHNICAL APPROACH

The workflow of CIGEN consists of three phases: first, domain-
partitioned sampling and coverage-based random sampling are
performed to generate sampling points in the input domain whose
inconsistencies are then calculated; second, input clustering is used
to generate "candidate input ranges" (CIR) where sample inputs
that cause inconsistencies exist; lastly, dense sampling and DE
are performed for each CIR to find the statistics of inputs in the
CIR, such as the average and maximum inconsistency errors. The
visualized workflow of CIGEN can be found in Figure 3.

Because of the logarithmic distribution of floating-point numbers
discussed in Section 2.1, all subroutines in this algorithm are either
run on the logarithmic scale such as the clustering algorithm and the
optimization algorithm, or that exponents and mantissas are treated

ICS ’24, June 04–07, 2024, Kyoto, Japan Miao et al.

main.c
func1.c
…

exe1

exe2

Inputs and their
inconsistencies

X1→Ε1
X2→Ε2

…
Xn→Εn

Candidate input
ranges (CIR)

(Xmin1,Xmax1)→Εr1
(Xmin2,Xmax2)→Εr2

…
(Xmink,Xmaxk)→Εrk

CIR Inconsistency Statistics
(Xmin1,Xmax1)→Εmax1, Avg(E1)
(Xmin2,Xmax2)→Εmax2, Avg(E2)

…
(Xmink,Xmaxk)→Εmaxk, Avg(Ek)

Emax=max(Emax1,Emax2,..,Emaxk)

General
Input
Sampling

Input
Clustering

Search
within CIR

Figure 3: Workflow of CIGEN.

separately such as generating random floating-point numbers from
randomized exponent and mantissa. We go into detail in the next
subsections.

3.1 General Input Sampling

The first phase in our algorithm is general input sampling, which
combines two different methods of generating inputs and testing
them to determine whether they trigger compiler-induced inconsis-
tencies: domain-partitioned sampling and coverage-based sampling.
The goal of this phase is to find a set of inputs that trigger compiler-
induced inconsistency before we can categorize them into groups
in the next phase. The algorithm for this phase is shown starting
from Line 16 in Algorithm 1.

In this phase, CIGEN generates a set of sample points which are
deemed representative of the characteristics of the inconsistency
function 𝐼𝑛𝑐 𝑓 (𝑥) in the input domain. The first step of the algorithm,
called domain-partitioned sampling, is to partition the floating-
point input domain of the program, FP, into several partitions, based
on the exponent part of the floating-point number. The partitions
are predefined in the case of FP32 and FP64 in CIGEN, and can
be customized depending on the floating-point types used in the
program. For FP64 programs which are evaluated in this paper, the
partition CIGEN uses is similar to the many-range partition used
in XSCOPE [15]:

𝐹 = 𝑁 −𝑚𝑎𝑥 ,−21020,−2333,−232,−23,−1,
− 2−3,−2−32,−2−333,−2−1018, 0, 2−1018, 2−333,

2−32, 2−3, 1, 23, 232, 2333, 21020, 𝑁 +𝑚𝑎𝑥 (4)

𝑓 𝑝0 = 𝑁
−
𝑚𝑎𝑥 , 𝑓 𝑝1 = −21020, . . . (5)

FP0 = |𝑓 𝑝0, 𝑓 𝑝1 |, FP1 = |𝑓 𝑝1, 𝑓 𝑝2 |, . . . (6)
CIGEN uses this input partition because the sampling rate is

higher in partitions with very small (close to subnormal), close to
1.0, and very large (close to infinite) floating-point numbers. Our
assumption is that numbers in these partitions are likely to trig-
ger floating-point exceptions such as underflow or overflow, thus
causing compiler-induced numerical inconsistencies. Compared to
XSCOPE,CIGEN uses values which are powers of 2 as boundaries of
each input partition instead of powers of 10. CIGEN then randomly
chooses a particular partition FP𝑖 = |𝑓 𝑝𝑖 , 𝑓 𝑝𝑖+1 | and then generates
a random floating-point number within FP𝑖 . Since floating-point
numbers are logarithmically distributed, if floating-point numbers
are generated in FP𝑖 with uniform distribution, in cases where 𝑓 𝑝𝑖

is much smaller than 𝑓 𝑝𝑖+1, for example, if 𝑓 𝑝𝑖 = 1 and 𝑓 𝑝𝑖+1 = 32
as shown in Figure 1, the value closest to 𝑓 𝑝𝑖+1 is 16x more likely
to be selected. To mitigate this issue, CIGEN instead randomly gen-
erates an exponent and a mantissa with uniform distribution, while
keeping the resulting floating-point value within FP𝑖 . In this way it
is guaranteed that any floating-point number in FP𝑖 has the same
probability of being selected, whether the number is closer to 𝑓 𝑝𝑖
or 𝑓 𝑝𝑖+1. This step is then repeated 𝐾1 times. The time complexity
of this step is 𝑂 (2𝑛) where 𝑛 is the number of input parameters.

Coverage-based Sampling. The next step is coverage-based
sampling. CIGEN collects a set of exponent values for each input
parameter that are not covered by the inputs generated in the
first step. For example, if the exponent value 100 did not appear
in previously generated inputs for input parameter 1, then 100
will be added to set 1. Then CIGEN selects an exponent value
from set 1, combines this exponent with a random mantissa as
input parameter 1, generates other input parameters using domain-
partitioned sampling described in the first step, and tests this set of
input parameters to see the inconsistency error it triggers. Continue
this selection process until all exponents in set 1 has been selected,
then repeat the same process in set 2, until all exponents in all sets
are selected. The goal of this step is to make sure that for all input
parameters, every possible exponent value can be found in at least
one input. The time complexity for this step is 𝑂 (𝑒 · 𝑛) where 𝑒 is
the number of possible exponents for the floating-point type, and
𝑛 is the number of input parameters.

The inputs generated by both steps above are tested for compiler-
induced numerical inconsistency. If an input triggers an inconsis-
tency, the input is added to 𝑆𝑎 , otherwise it is added to 𝑆𝑧 . Both sets
of inputs, along with the inconsistency errors they trigger, are sent
to the next phase where they are used in determining the bounds
of input ranges that contain inconsistency-inducing inputs.

3.2 Input Clustering

The input clustering phase is shown starting from Line 34 in Al-
gorithm 1. It takes the two sets of inputs from the previous phase,
𝑆𝑎 and 𝑆𝑧 , categorizes them into various groups according to the
relative proximity between inputs using hierarchical agglomerative
clustering, and generate a candidate input range (CIR) for each
group.

First, CIGEN categorizes 𝑆𝑎 and 𝑆𝑧 into multiple subsets accord-
ing to the orthant each input belongs to. The reason for this is that
the clustering algorithm used in this phase calculates the Euclidean
distance between points on the logarithmic scale, and floating-point

Input Range Generation for Compiler-Induced Numerical Inconsistencies ICS ’24, June 04–07, 2024, Kyoto, Japan

Algorithm 1: The multi-phase algorithm in CIGEN.
1 Function RandomFloat(𝐷𝑜𝑚𝑎𝑖𝑛):
2 𝑆𝑖𝑔𝑛 𝑗 =rand (0, 1) ;
3 𝐸𝑥𝑝 𝑗 =rand (𝐷𝑜𝑚𝑎𝑖𝑛) ;
4 𝑀𝑎𝑛𝑡 𝑗 =randmantissa ();
5 return 𝑆𝑖𝑔𝑛 𝑗 , 𝐸𝑥𝑝 𝑗 , 𝑀𝑎𝑛𝑡 𝑗

6 Function TestInc(𝑥, 𝑆𝑎, 𝑆𝑧):
7 𝑖𝑛𝑐 = 𝐼𝑛𝑐 𝑓 (𝑥) ;
8 𝑀𝑎𝑥𝐼𝑛𝑐 =max (𝑖𝑛𝑐,𝑀𝑎𝑥𝐼𝑛𝑐);
9 if inc > 0 then
10 𝑆𝑎 = 𝑆𝑎 ∪ { (𝑥, 𝑖𝑛𝑐) };
11 else

12 𝑆𝑧 = 𝑆𝑧 ∪ { (𝑥, 𝑖𝑛𝑐) };
13 return 𝑖𝑛𝑐

14 Function MainAlgorithm(𝐼𝑛𝑐 𝑓 , 𝑛):
15 // General Input Sampling

16 𝑆𝑎, 𝑆𝑧 , 𝐸𝑥𝑝𝑆𝑒𝑡1...𝑛 = ∅;
17 for 𝑖 ← 1 to 𝐾1 do
18 for 𝑗 ← 1 to 𝑛 do

19 𝑆𝑖𝑔𝑛 𝑗 , 𝐸𝑥𝑝 𝑗 , 𝑀𝑎𝑛𝑡 𝑗 =RandomFloat(FP𝑟𝑎𝑛𝑑 ());
20 𝐸𝑥𝑝𝑆𝑒𝑡 𝑗 = 𝐸𝑥𝑝𝑆𝑒𝑡 𝑗 ∪ { (𝑆𝑖𝑔𝑛 𝑗 , 𝐸𝑥𝑝 𝑗) };
21 𝑥 =combine (𝑆𝑖𝑔𝑛1...𝑛, 𝐸𝑥𝑝1...𝑛, 𝑀𝑎𝑛𝑡1...𝑛) ;
22 TestInc(𝑥, 𝑆𝑎, 𝑆𝑧);
23 for 𝑖 ← 1 to 𝑛 do

24 foreach (𝑆𝑖𝑔𝑛, 𝐸𝑥𝑝) ∉ 𝐸𝑥𝑝𝑆𝑒𝑡𝑖 do
25 for 𝑗 ← 1 to 𝑛 do

26 if 𝑖 = 𝑗 then

27 𝑀𝑎𝑛𝑡 𝑗 =randmantissa ();
28 𝑆𝑖𝑔𝑛 𝑗 , 𝐸𝑥𝑝 𝑗 = 𝑆𝑖𝑔𝑛, 𝐸𝑥𝑝 ;
29 else

30 𝑆𝑖𝑔𝑛 𝑗 , 𝐸𝑥𝑝 𝑗 , 𝑀𝑎𝑛𝑡 𝑗 =RandomFloat(FP𝑟𝑎𝑛𝑑 ());

31 𝑥 =combine (𝑆𝑖𝑔𝑛1...𝑛, 𝐸𝑥𝑝1...𝑛, 𝑀𝑎𝑛𝑡1...𝑛) ;
32 TestInc(𝑥, 𝑆𝑎, 𝑆𝑧);

33 // Input Clustering

34 𝐶𝐼𝑅 = ∅;
35 for 𝑆𝑎𝑖 , 𝑆𝑧𝑖 in each orthant do
36 𝐶𝑖1, . . . ,𝐶𝑖𝑚 =ClusteringByAbsLog (𝑆𝑎𝑖);
37 foreach𝐶𝑖 𝑗 in𝐶𝑖1, . . . ,𝐶𝑖𝑚 do

38 (𝐵𝐵 𝑗 , 𝑀𝑎𝑥𝐼𝑛𝑐 𝑗 , 𝑀𝑎𝑥𝑋 𝑗) =MinBoundingBox (𝐶𝑖 𝑗);
39 enlarge 𝐵𝐵 𝑗 by points in 𝑆𝑧𝑖 ;
40 𝐶𝐼𝑅 = 𝐶𝐼𝑅 ∪ (𝐵𝐵 𝑗 , 𝑀𝑎𝑥𝐼𝑛𝑐 𝑗 , 𝑀𝑎𝑥𝑋 𝑗) ;

41 // Search Within Candidate Input Ranges

42 for𝐶𝐼𝑅𝑖 in𝐶𝐼𝑅 do

43 for 𝑗 ← 1 to 𝐾2 do
44 for 𝑘 ← 1 to 𝑛 do

45 𝑆𝑖𝑔𝑛𝑘 , 𝐸𝑥𝑝𝑘 , 𝑀𝑎𝑛𝑡𝑘 =RandomFloat(𝐶𝐼𝑅𝑖);
46 𝐸𝑥𝑝𝑆𝑒𝑡 𝑗 = 𝐸𝑥𝑝𝑆𝑒𝑡 𝑗 ∪ { (𝑆𝑖𝑔𝑛 𝑗 , 𝐸𝑥𝑝 𝑗) };
47 𝑥 =combine (𝑆𝑖𝑔𝑛1...𝑛, 𝐸𝑥𝑝1...𝑛, 𝑀𝑎𝑛𝑡1...𝑛) ;
48 𝑖𝑛𝑐=TestInc(𝑥, 𝑆𝑎, 𝑆𝑧);
49 replace𝑀𝑎𝑥𝐼𝑛𝑐𝑖 , 𝑀𝑎𝑥𝑋𝑖 if 𝑖𝑛𝑐 > 𝑀𝑎𝑥𝐼𝑛𝑐𝑖 ;
50 DifferentialEvolution (𝐼𝑛𝑐 𝑓 ,𝐶𝐼𝑅𝑖 , 𝑀𝑎𝑥𝑋𝑖);

numbers in different orthants cannot be put on the same logarithmic
scale. For example, if 𝑋 ∈ 𝑆𝑎 & 𝑠𝑖𝑔𝑛(𝑥) = (+,−), then 𝑋 ∈ 𝑆𝑎 (+,−) .
This means that all inputs in this subset have the same sign con-
figuration: the first input parameter is positive, and the second is
negative. We now use the subsets 𝑆𝑎 (+,−) and 𝑆𝑧 (+,−) to describe
the algorithm in this subsection.

Second, for each subset where all inputs belong to the same
orthant, all parameters in 𝑆𝑎 (+,−) are transformed to the logarithm
of the absolute value, then CIGEN runs a clustering algorithm to

𝑃1

𝑃2

𝑃3

𝑃4

𝑥2

𝑥1

Figure 4: An example showing how to calculate a CIR from a

set of input points that cause inconsistencies in larger green

dots, and input points that do not cause inconsistencies in

smaller red dost. Green box shows the minimum bounding

box for the green points, while the red box shows the can-

didate input range calculated for this set of inconsistency-

inducing inputs.

categorize them into different groups. Specifically, CIGEN uses
hierarchical agglomerative clustering [19] due to the fact that this
algorithm does not require a predefined number of clusters to run,
and thatCIGEN does not know beforehand howmany clusters there
are. The end result is a list of groups (subsets) 𝑆𝑎 (+,−)1, 𝑆𝑎 (+,−)2, ...,
𝑆𝑎 (+,−)𝑟 .

Lastly, CIGEN calculates a CIR for each 𝑆𝑎 (+,−)𝑘 where 1 ≤
𝑘 ≤ 𝑟 . An example is shown in Figure 4. CIGEN first calculates
a minimum bounding box (green rectangle in the figure) for the
inputs in 𝑆𝑎 (+,−)𝑘 (green dots in the figure), then for each axis (𝑥1
and 𝑥2) representing each input parameter, CIGEN finds one point
in 𝑆𝑧 (+,−) outside of the minimum bounding box and closest to the
lower bound on the current axis (𝑃1 and 𝑃3 for axes 𝑥1 and 𝑥2 in
the figure), then update the lower bound on the current axis to this
point; then finds another point in 𝑆𝑧 (+,−) outside of the minimum
bounding box and closest to the upper bound on the current axis
(𝑃2 and 𝑃4 for axes 𝑥1 and 𝑥2 in the figure), then update the upper
bound on the current axis to this point. Repeat this process for all
axes and the updated bounding box becomes the new CIR. CIGEN
then gathers all CIRs and sends them to the next phase.

3.3 Search Within Candidate Input Ranges

The third phase of the CIGEN algorithm identifies characteristics
of each CIR sent from the last phase, including average and max-
imum inconsistency. CIGEN achieves this by running a two-step
optimization algorithm on each CIR. The algorithm can be found
starting from Line 42 in Algorithm 1.

First, for all CIR,CIGEN runs dense sampling with the same input
sampling method as domain-partitioned sampling in Section 3.1 𝐾2
times to gather data on statistics of inconsistency-inducing inputs in

ICS ’24, June 04–07, 2024, Kyoto, Japan Miao et al.

the CIR. The end results are the average of inconsistencies triggered
by sampled points, and a maximum inconsistency along with its
triggering input. This information is then sent to an optimization
algorithm.

There are many optimization algorithms available for both ap-
proximating a function and finding the global maximum/minimum.
We have previously shown in Section 2.3 that the inconsistency
function 𝐼𝑛𝑐 𝑓 (𝑥) (a) has numerous local minimums and maximums,
and thus it is difficult to express in polynomial terms; and (b) no
bound can be inferred where all inputs inside the bound cause
inconsistencies, while all inputs outside the boundary cause no in-
consistencies. Thus CIGEN uses differential evolution [6] to locate
the global maximum of the inconsistency function 𝐼𝑛𝑐 𝑓 (𝑥) in the
CIR. DE is selected because it is a genetic algorithm where current
candidates are improved upon by mutations.

CIGEN uses logarithmic scaling for each input range to be opti-
mized. This makes the process of finding maximums more efficient
when input ranges are large. Thus the inconsistency function is
transformed as:

𝐼𝑛𝑐′
𝑓
(𝑥) = E(𝑓0 (2𝑥), 𝑓𝑜𝑝𝑡 (2𝑥)) (7)

where 𝑥 is between the logarithm of minimum and maximum
values in the input range. The input in the CIR thatCIGEN currently
reports to trigger maximum inconsistency error is also sent to DE as
an initial population, in order to speed up the optimization process.
Once all DE processes are finished, the maximum inconsistency
between all local maximums found will become the reported global
maximum.

4 EXPERIMENTAL EVALUATION

This evaluation answers the following research questions:
RQ1 How effective is CIGEN at finding inputs that trigger large

compiler-induced inconsistencies in comparison to the state
of the art and a general-purpose approach?

RQ2 How time-efficient is CIGEN in comparison to the state of
the art?

RQ3 How many input ranges can CIGEN find with inconsistency-
inducing inputs, and what information we can infer from
these input ranges?

4.1 Experimental Setup

Benchmarks. We evaluate CIGEN on 175 functions from the GNU
Scientific Library (GSL) [8] version 2.7. GSL is a numerical library
for C and C++ programmers that provides a wide range of math-
ematical routines, such as linear algebra, differential equations
and special functions. Our evaluation of GSL focuses on all library
functions with floating-point input and output, consisting of 175
functions, most of which are special functions such as Bessel and
hypergeometric functions. Amongst these functions, 122 are single-
parameter functions, while the rest 53 are multi-parameter.

We assume that the input domain of these functions is FP64𝑛 ,
where 𝑛 is the number of input parameters, unless the input domain
of a function is explicitly stated in the GSL documentation. There are
47 functions out of 175 where there are input domain specifications
in the GSL documentation. One example is the input domain for
gsl_sf_bessel_K1(x) which is 𝑥 > 0. This is a valid assumption

Table 2: Number of GSL functions for whichCIGEN,CIV, and

BGRT have discovered input that causes an inconsistency

error higher than 48, 32, 8, and 0, respectively.

Method >48 >32 >8 >0

CIGEN 125 (71.4%) 127 (72.6%) 133 (76.0%) 163 (93.1%)
CIV 81 (46.3%) 94 (53.7%) 110 (62.9%) 155 (88.6%)
BGRT 20 (11.4%) 20 (11.4%) 22 (12.6%) 35 (20.0%)

because inputs outside of the input domain have no valid meaning
in the mathematical sense and may return an inf or NaN value.

Programs under evaluation are compiled and tested with Clang
16.0.6. Inconsistencies are calculated by comparing results from
two binary variants of the same program, one compiled with -O0
and the other with -O3 -ffast-math. This applies to both CIGEN
and CIV (both the original paper and our implementation), for a
better comparison.

Baselines. As of the writing of this paper, there is no other work
that finds input ranges that trigger compiler-induced numerical
inconsistencies. The closest work is CIV [28], which for a given
program generates an input that triggers a large compiler-induced
inconsistency. Thus, we compare CIV and CIGEN in their effective-
ness to find large inputs thatmaximize compiler-induced numerical
inconsistencies. The source code of CIV is not available publicly,
and the CIV authors declined our request for source code. Thus,
for better comparison under the same runtime environments, we
have implemented1 the algorithm in CIV, and set up its parameters
according to the specifications in the paper.

Since our focus when comparing with the state of the art is in
maximizing inconsistencies, we also adapt a general algorithm that
finds inputs that cause large errors. Specifically, we use the Binary
Guided Random Testing (BGRT) method, implemented in S3FP [3].
This baseline is also used by the CIV authors in their evaluation.

Algorithm Parameters. We specify the number of random
samples in both domain-partitioned sampling steps (Section 3.1
and Section 3.3) with 𝐾1 = 𝐾2 = 256 · 2𝑛 , where 𝑛 is the number
of input parameters of the function. We use the scikit-learn [21]
machine learning library to implement agglomerative cluster-
ing (Section 3.2), with parameters as follows: n_clusters=None,
distance_threshold=0.2, metric=’euclidean’, linkage=’single’. This
means we use the minimum Euclidean distance between input
points as the criteria for determining whether two points belong to
the same cluster. Lastly, we use SciPy [25] to implement differen-
tial evolution (Section 3.3) with parameters: updating=’deferred’,
popsize=20, maxiter=50.

CIGEN and CIV run until termination, thus do not require a
budget. For BGRT, we follow the specification given in [28] and set
a budget of 𝑇 = 60 · 2𝑛 seconds, where 𝑛 is the number of input
parameters of the function.

Runtime Environments. We use a PC with an 18-core Intel(R)
i9-10980XE processor with 256 GiB RAM running Ubuntu 22.04 OS
in our evaluation. While the core algorithms for each tool are run

1When needed, we confirmed implementation details with CIV authors. Our im-
plementation of CIV is publicly available in the same code repository as CIGEN:
https://github.com/LLNL/CIGEN/.

https://github.com/LLNL/CIGEN/

Input Range Generation for Compiler-Induced Numerical Inconsistencies ICS ’24, June 04–07, 2024, Kyoto, Japan

0-8 8-16 16-24 24-32 32-40 40-48 48-56 56-64
0

20

40

60

80

Inconsistency Error

N
um

be
ro

fF
un

ct
io
ns

civ cigen bgrt

Figure 5: The number of functions with various ranges of

maximum inconsistency error discovered byCIGEN,CIV and

BGRT. CIGEN finds inputs that trigger high inconsistency

error (>48.0) for more functions than CIV and BGRT.

cigen civ bgrt

0

1

2

3

4

5

St
ab
ili
ty

Ra
tio

Figure 6: Box plot showing the statistics of stability ratio

between the tools for all 175 functions tested. The boxes

show the range between the first to the third quartile of

results, and the whiskers show the interquartile range. The

flier points show stability ratio outside of the interquartile

range.

serially, the process of measuring the compiler-induced numerical
inconsistencies for every input is run in parallel, utilizing all CPU
resources.

4.2 RQ1: Effectiveness in Triggering Large

Inconsistencies

We first evaluate the effectiveness of CIGEN in finding inputs that
trigger large compiler-induced inconsistencies in comparison to
CIV and BGRT. We consider two evaluation metrics: the number of

GSL functions for which a compiler-induced inconsistency is trig-
gered, and the average of maximum inconsistency errors discovered
for these functions.

Functions with Triggered Inconsistencies. Table 2 shows the num-
ber of GSL functions for which the tools can find inconsistency-
inducing inputs with error higher than 48, 32, 8, and 0, respectively.
CIGEN finds inputs that cause high inconsistency error of 48 or
more in 125 functions. This is 54.3%more functions thanCIV, which
triggers such error for 81 functions. On the other hand, BGRT can
only find inputs triggering inconsistency error of 48 or more in 20
functions. Note that CIGEN’s 125 functions are a superset of the 81
functions from CIV and the 20 functions from BGRT, which means
that all high compiler-induced inconsistencies discovered by CIV
and BGRT can also be found by CIGEN. Even when considering
smaller inconsistencies, e.g., 8 or higher, CIGEN triggers inconsis-
tencies in a larger number of functions: 133 vs. 110 in CIV and 22
in BGRT.

We further discuss the results based on whether a function is
single- or multi-parameter. Out of 122 single-parameter GSL func-
tions tested, CIGEN finds inputs that trigger 32 or higher compiler-
induced numerical inconsistency error in 80 of them. In contrast,
CIV can only find inputs for 51 functions. CIGEN shows 56.9% im-
provement over the state of the art. In contrast, BGRT can only find
such inputs for 14 functions. On the other hand, among 53 GSL func-
tions with multiple input parameters, CIGEN finds inconsistency-
inducing inputs of error 32 or higher in 47 of them, while CIV
triggers such errors in 43 functions, a 9.3% improvement. BGRT
can only generate inputs for 6 functions. If we consider functions
for which an error of 8 or higher is triggered, the improvement of
CIGEN over CIV is smaller: CIGEN triggers inconsistencies in 84
single-parameter functions vs. 64 with CIV, a 31.3% improvement;
and in 49multi-parameter functions vs. 46 withCIV, a 6.5% improve-
ment. And again, BGRT performs unfavorably against the other
two, with 16 single-parameter functions and 6 multi-parameter
functions.

MaximumAverage Inconsistency Error. The average inconsistency
error triggered on average by CIGEN is 43.40 (38.25 for single-
parameter functions and 55.26 for multi-parameter functions) vs.
CIV’s average of 32.33 (22.51 for single-parameter functions and
51.41 for multi-parameter functions), and BGRT’s average of 6.81
(6.72 for single-parameter functions and 7.02 for multi-parameter
functions). The statistics of peak compiler-induced inconsistencies
of all functions can be found in histogram form in Figure 5. From
the histogram, we observe that the maximum inconsistencies of
most functions for all tools are distributed in the 0-8 and 48-64
regions, with CIGEN successfully triggering higher inconsistencies
for more functions (see the 48-64 region).

From our manual inspection of the results, we can group the
compiler-induced inconsistencies CIGEN discover into three cate-
gories: (1) smaller (<8) inconsistencies that are accumulated from
multiple rounding errors; (2) inconsistencies that are close to 52,
where the output from clang -O3 -ffast-math is zero while the
output from clang -O0 is subnormal (or close to subnormal); and
(3) inconsistencies close to the maximum possible inconsistency er-
ror of 64, either from an instruction that generates special numbers
such as inf or NaN, or from sign flips.

ICS ’24, June 04–07, 2024, Kyoto, Japan Miao et al.

20 40 60 80 100 120 140 160

100

101

102

103

Ranking of Running Time on cigen

Ti
m
e
(se

co
nd

s)
bgrt
civ

cigen

0.01x

0.1x

10x

100x

1x

Ti
m
e(
ci
ge

n)
/T
im

e(
ci
v)

Time(cigen)/Time(civ)

Figure 7: Running time for all 175 functions tested, in ascending order by the running time on CIGEN, along with the running

time ratio of Time(CIGEN)/Time(CIV). Running time for BGRT is also displayed for reference.

0 10 20 30 40
0

20

40

60

Time Elapsed (seconds)

In
co
ns
ist
en
cy

Er
ro
r

civ
cigen

Figure 8: Maximum inconsistency error discovered over time

for function gsl_sf_hyperg_2F1_renorm for the evaluated

tools. Statistics after the first 40 seconds are omitted when

the maximum inconsistency error for the tools no longer

changes.

Result Stability. Given CIGEN and our baselines utilize random
testing, indeterminacy can be a potential issue affecting effective-
ness. To evaluate how indeterminacy impacts the maximum in-
consistency error triggered by the tools, we use the same method
specified in [28] to compare the stability between CIGEN, CIV and
BGRT. We run each of the three tools on the same 175 GSL func-
tions 30 times and calculate the stability ratio for each function
tested, which is defined as the ratio of the standard deviation 𝜌 to
the mean 𝜇: 𝐶𝑣 = 𝜌

𝜇 .
The result is shown in Figure 6. Judging from the box plot, we can

first conclude that BGRT performs more stably than both CIGEN
and CIV. However, since BGRT performs much less favorably than
CIGEN and CIV, the stability shown here simply means it performs
consistently worse than the other two. When we compare CIGEN
and CIV, we can see that (1) the interquartile range from CIGEN is
much smaller than the one from CIV; and (2) in terms of flier points,
which indicate functions for which the tools are least stable, CIGEN
still performs more stable than CIV. Thus we conclude that CIGEN

is more stable than CIV in finding inputs that cause maximum
inconsistencies.

Comparison with Original CIV Results. As noted earlier, we did
not have access to the original implementation of CIV (Section 4.1),
and thus all results discussed in this paper were obtained through
our own implementation. Nevertheless, it is important to note that
when directly compared to the results presented in [28], CIGEN
is even more effective than reported in this paper. From Table 2
we know that CIGEN finds inputs that cause inconsistency error
higher than 48 in 71.4% (125 out of 175) of functions, compared to
46.3% (81 out of 175) in our CIV implementation and 30.4% (48 out
of 158) reported in the CIV paper. Therefore, we can conclude that
CIGEN is superior to both the original and our implementation of
CIV in terms of maximum inconsistency error discovered.

Results: CIGEN and CIV perform closely in terms of finding an
input that triggers compiler-induced inconsistencies at all, even
thoughCIGEN is still slightly ahead; on the other hand,CIGEN is su-
perior thanCIV and BGRT in finding inputs that maximize compiler-
induced inconsistencies in both single- and multi-parameter func-
tions. Finally, simply adapting a general-purpose approach for max-
imizing error is not effective for compiler-induced inconsistencies.

4.3 RQ2: Time Efficiency

In this section we evaluate the efficiency of CIGEN and compare
it with the state-of-the-art tool CIV.2 CIGEN finds at least one
inconsistency-inducing input for 163 out of 175 functions (see Ta-
ble 2). For these functions, CIGEN takes an average of 17.95 seconds
to generate inputs. For the remaining 12 functions, CIGEN takes an
average of 1.31 seconds to conclude that no inconsistency-inducing
input is found. On the other hand, our implementation of CIV
2BGRT is given a fixed budget to run (see Section 4.1) and thus is not included it in
this comparison. Figure 7 includes BGRT only for reference.

Input Range Generation for Compiler-Induced Numerical Inconsistencies ICS ’24, June 04–07, 2024, Kyoto, Japan

takes on average 155.15 seconds to generate inputs that trigger
inconsistencies in 155 out of 175 functions. For the remaining 20
functions, it takes 44.73 seconds on average to determine that no
inconsistency-inducing input is found. Thus, CIGEN is 8× faster
than CIV in finding inconsistency-inducing inputs, and determines
that no such input is found 33× faster. Figure 7 plots the running
time of each of the 175 functions, regardless of whether an incon-
sistency is triggered. Functions are sorted in ascending order by
the running time of CIGEN.

To investigate how the tools compare when time is limited, we se-
lect one of the functions with the longest runtime for both tools: the
multi-parameter function gsl_sf_hyperg_2F1_renorm. We evalu-
ate how much time it takes for the tools to first discover an input
that causes a high inconsistency error. Figure 8 shows the maximum
inconsistency error discovered over time. From the figure we can
observe that CIGEN finds an input that triggers an inconsistency
error of 63 just after 1 second. Meanwhile it takes 28.95 seconds for
CIV to achieve the same result. It is possible to use CIGEN to find
an input that triggers a compiler-induced inconsistency as high as
possible within a given budget.

We found only one function, gsl_sf_multiply, for which
CIGEN takes longer than CIV. From our observation, this is because
DE is constantly updating its population with inputs that cause
a minuscule amount of increase in inconsistency error, therefore
the optimization algorithm takes a long time to finish. However,
even when its total running time is higher, CIGEN still finds a large
inconsistency-inducing input faster than CIV. Specifically, CIGEN
only takes 5 seconds to find an input that causes an inconsistency
error higher than 60, while CIV takes 47 seconds to achieve the
same result.

Results: CIGEN shows 8× improvement over CIV in running
time in finding inputs that trigger compiler-induced inconsisten-
cies. It is 33× faster in determining that no such input is found. It
also takes a shorter time than CIV to find an input that triggers
inconsistencies as high as possible within a specified budget.

4.4 RQ3: Input Ranges With

Inconsistency-Inducing Inputs

A unique feature of CIGEN is its ability to find input ranges (candi-
date input ranges, CIR) in which inputs that cause compiler-induced
numerical inconsistencies are found. This section further describes
the characteristics of these CIRs in terms of the number of CIRs
reported by CIGEN, and the root cause of the compiler-induced
inconsistencies triggered by the maximum-error input in each CIR.

Input Range Statistics. We first investigate the CIRs found by
CIGEN in single-parameter GSL functions. Amongst 113 functions
in which at least one inconsistency-inducing input is found, the
number of candidate input ranges are between 1 and 5. A simple ex-
ample function with only 1 CIR is gsl_sf_log, where only positive
subnormal input values between [0, 2.225e-308] trigger an incon-
sistency. A more complex example with 2 CIRs is gsl_sf_Airy_Ai
in Figure 9. We can see that the inputs we have found to cause
compiler-induced inconsistencies can be grouped into two input
ranges: one between [-6.63e+26, -1.90], the other between [0.63,

291.13]. For the first input range, among the dense sampling points
tested (Section 3.3), 89.1% of sampled inputs trigger inconsisten-
cies, with an average inconsistency error of 46.54. For the second
input range, 19.5% of sampled inputs trigger inconsistencies, with
an average inconsistency error of 5.49. Developers can utilize this
information when they consider improving the accuracy of a func-
tion.

In the case of multi-parameter GSL functions, the situation is
more complex: among the 50 functions in which we have found
inputs that cause compiler-induced inconsistencies, the number
of CIRs varies between 1 and 102, with an average of 15.02 CIRs
per function. The number of input ranges is especially higher
amongst 3 and 4 input parameter functions, likely because there
are exponentially more conditions where they satisfy the require-
ments of introducing a compiler-induced inconsistency. Figure 10
shows an example corresponding to the 2-parameter function
gsl_sf_bessel_Jnu, for which CIGEN reports 6 CIRs. Each dot in
the figure represents a sampled input. Red dots denote inputs that
do not trigger inconsistencies. Green dots denote inputs that trigger
inconsistencies, and their size is proportional to their inconsistency
error. Each CIR is indicated by a blue rectangle.

Root Cause of Triggered Inconsistencies. To further investi-
gate the nature of the compiler-induced inconsistencies captured
by each CIR, we use the state-of-the-art tool for isolating compiler-
induced inconsistencies, Ciel [17]. Given a program and an input
known to trigger a compiler-induced inconsistency in that program,
Ciel applies a bisection algorithm and precision enhancement to
isolate the expression(s) in the program responsible for causing
such inconsistency. We consider all 70 single-parameter functions
for which CIGEN reports more than one CIR, and select the input
with maximum error from each CIR. We then run Ciel for each
program and input. For 21 out of 70 functions, Ciel isolates distinct
expressions for different inputs, suggesting that the programs suffer
from multiple sources of compiler-induced inconsistency which are
captured by the distinct CIRs. An example of these 21 functions is
the two inconsistency-inducing inputs in gsl_sf_Airy_Ai, in two
different input ranges shown in Figure 9: 𝑥1 = 7.663693956591586
and 𝑥2 = −997404629288211.9. For 𝑥1, Ciel isolates a statement in
the function gsl_sf_airy_Ai_e:

double s = exp(-2.0*x32 /3.0);

Meanwhile for𝑥2,Ciel isolates a statement in a different function
gsl_sf_cos_e:

z = ((abs_x - y * P1) - y * P2) - y * P3;

After investigation at the binary level, it turns out that both
inconsistencies are triggered by reassociation of floating-point op-
erations introduced by the -ffast-math flag: in the first case, it
combines -2.0/3.0 into one constant; in the second case, it adds
P1,P2,P3 into one constant. This example shows that finding these
input ranges can help software developers isolate as much source
code that causes compiler-induced numerical inconsistencies as
possible, and deal with them accordingly.

On the other hand,Ciel isolated only one source of inconsistency
across all CIRs in 28 functions, 25 of which have exactly 2 CIRs.
This is still acceptable in common scenarios, for example, positive
and negative subnormal numbers trigger an inconsistency from
the same source code location, even though the inputs belong to

ICS ’24, June 04–07, 2024, Kyoto, Japan Miao et al.

-6e+138 -4e-16 -3e-170 0e+00 3e-170 4e-16 6e+138

16

32

48

64

Program Input

In
co
ns
ist
en
cy

Er
ro
r

Figure 9: Sampled inputs, the inconsistency error triggered

by these points, and detected candidate input ranges of

gsl_sf_Airy_Ai. Red and green dots indicate sampled inputs,

while blue rectangles indicate candidate input ranges.

-8e+292 -6e+138 -4e-16 -3e-170 0e+00 3e-170 4e-16 6e+138 8e+292

-8e+292

-6e+138

-4e-16

-3e-170

0e+00

3e-170

4e-16

6e+138

8e+292

Figure 10: Sampled inputs and detected input ranges of

gsl_sf_bessel_Jnu(). Red dots denote an input that does

not trigger inconsistency, while green dots do. Size of the

green dots denotes the inconsistency error triggered. Blue

rectangles indicate candidate input ranges.

different CIRs. In such cases is still helpful to know about both CIRs
to be able to handle both corner cases. Finally, there were 8 functions
for which Ciel only isolated expressions for some inputs, and 13
functions for which Ciel was unable to isolate any expression. This
does not invalidate our findings as the inputs generated by CIGEN
are used to test the programs and verify the presence of a compiler-
induced inconsistency. Rather, these inconsistencies may involve
numbers such as ±0 and NaN, which remain unchanged regardless
of precision and are known sources of false negatives for Ciel.

Results: CIGEN finds between 1 to 102 candidate input ranges
for all GSL functions tested. Using the state-of-the-art tool for
isolating compiler-induced inconsistencies, Ciel, we find 21 single-
parameter functions where multiple sources of compiler-induced in-
consistency have been captured by distinct candidate input ranges.

4.5 Limitations

First, our experimental evaluation only considered an assortment of
GSL functions with floating-point inputs and output. The number
of floating-point inputs is also relatively small, with the maximum
being 4 input parameters. In terms of time complexity, the time used
for CIGEN to analyze any program is a function of𝑇 and 𝐼 , where𝑇
is the execution time of the program and 𝐼 is the number of program
inputs. For a given input 𝑖 ∈ 𝐼 , 𝑇 could be a function of several
parameters, such as the number of loops or the number of functions
in a program. Thus, for programs with more inputs and longer ex-
ecution time, CIGEN may still find some inconsistency-inducing
inputs under time limits, but it may suffer from scalability limita-
tions mapping CIRs. An improved algorithm that is more aware of
the relationship between the source code and the compiled binaries,
optimized or not, may be necessary to explore the characteristics
of inconsistency-inducing inputs of such programs. Despite the
above, our work represents a step forward in automated generation
of inputs that trigger compiler-induced numerical inconsistencies,
and our evaluation is still representative and on par with the state
of the art, considering a large number of real-world functions from
the popular GNU Scientific Library.

Second, CIGEN focuses on numerical inconsistencies observed
in a deterministic program when compiled with different compilers
and/or optimization options. CIGEN does not handle cases where
the programs are non-deterministic, or when programs are subject
to malicious code injections from outside sources.

Third, as mentioned throughout the paper, we implemented CIV
from scratch. In the implementation process we found that many
parameters, such as how many partitions the algorithm uses for
floating-point input domain (𝑃) or the number of tryouts for each
experiment run, are not mentioned in the CIV paper. To minimize
the risk of discrepancies between the original implementation and
ours, we contacted the authors to request additional information
about their implementation. While some questions were answered,
there is still room for potential differences. In particular, the results
in the CIV paper show a non-exponential relationship between the
number of input parameters 𝑛 and the running time of CIV of a
function, but the time complexity of the CIV algorithm should be
𝑂 (𝑃𝑛) which is exponential. This in turn means our implementa-
tion of CIV may have higher time complexity than the original
implementation. The above observations make a direct comparison
between CIGEN and the results in the CIV paper impossible. To
mitigate this issue, in Section 4.2 we compared the results indirectly,
first comparing between our implementations of CIGEN and CIV,
then comparing our implementation of CIV against the results in
the CIV paper. We also make the source code and data of our work
publicly available for further research and validation.

Input Range Generation for Compiler-Induced Numerical Inconsistencies ICS ’24, June 04–07, 2024, Kyoto, Japan

Last, our results reveal an overlap between triggering compiler-
induced inconsistencies and triggering floating-point exceptions,
such as underflow and overflow. Given this, it may be interesting to
see if tools such as XSCOPE [15] can be customized for our purpose.

5 RELATEDWORK

Floating-Point Input Generation to Maximize Errors. CIV [28]
generates inputs that cause high compiler-induced numerical incon-
sistencies via input space partition and Markov Chain Monte Carlo
(MCMC) sampling. It compares LLVM Intermediate Representa-
tion (IR) floating-point execution traces between binary programs
compiled with different compiler and/or optimization flags in or-
der to determine if an input is a candidate input for MCMC, but
this technique limits its use to compilers based on LLVM. In con-
trast, CIGEN utilizes the logarithmic distribution of floating-point
numbers and the importance of exponents in terms of triggering
high compiler-induced numerical inconsistencies while being both
architecture and compiler independent.

Other tools related to our work are limited to finding high
floating-point precision errors in programs with a limited num-
ber of variables. They are referred to in various degrees during
the design of CIGEN. S3FP [3] uses binary guided random testing
(BGRT) to find inputs that trigger large precision errors in numer-
ical programs. Input ranges for each variable are halved and for
every iteration, it picks the upper or lower half of the variable range
and creates random test input within these ranges. It then chooses
the one range configuration with the largest error; and repeats the
random testing process.

Some tools use shadow execution techniques in order to track
how precision errors occur and how they are propagated and ampli-
fied throughout the program data flow. For example, FPSanitizer [4]
and PFPSanitizer [5] run parts of a program in higher precision
with posits [14]. The posit version of the program is run in par-
allel with the same code snippets in original precision, in order
to facilitate the debugging of floating-point errors. RAIVE [16] on
the other hand uses vectorization to implement shadow execution.
Each scalar variable is expanded to a 4-dimension vector, in order
to artificially inject errors that are upper bounds of actual errors;
RAIVE then detects branch divergence along the execution. We
have considered shadow execution during the design of CIGEN.
However, we find that optimized and unoptimized versions of the
same program can diverge significantly in terms of the order and the
types of floating-point instructions which makes shadow execution
difficult to implement.

Tools using other dynamic analysis techniques to detect preci-
sion errors include ATOMU [31], which uses the condition numbers
of each floating-point atomic operation to build an error model to
effectively guide the search for large precision errors. FPGen [13]
on the other hand treats maximizing floating-point errors as a prob-
lem of maximizing code coverage. It uses symbolic execution with
KLEE [1] on programs injected with error checks to detect precision
loss and catastrophic cancellation. Compared to FPGen,CIGEN uses
a black-box approach, and is not limited by the compiler used to
implement KLEE—Clang.

Our method of guided random sampling in CIGEN is similar to
FPED [26]. It first generates inputs more evenly on the predefined

input range, then it partitions the ranges according to error value
distribution, and then generates more inputs where precision er-
ror is high. Aceso [29] uses an oracle-free approach to estimate
floating-point errors. It samples the program and examines the
pattern statistics (micro structures) of results of floating-point pro-
grams within an input range to estimate the floating-point errors
of a program. CIGEN also uses a clustering algorithm to look for
patterns in the results of floating-point programs, and also uses an
oracle-free approach except when special values are involved.

Use of Optimization Algorithms in Floating-Point Program
Analysis. AutoRNP [27] uses differential evolution (DE) and Monte
Carlo Markov Chain (MCMC) on the condition number to detect
large precision errors, uses a point-to-bound algorithm to expand
the point that triggers large precision errors into an input range
that triggers large errors.CIGEN also makes use of DE to find inputs
that cause compiler-induced numerical inconsistencies.

Similar to CIGEN, genetic algorithm is used in [30] to trigger
high precision errors. It uses an example to show that exponents in
a floating-point input are important in determining precision errors,
and runs genetic algorithm that generates andmutates exponents so
that an input value that triggers high precision errors can be found.
CIGEN proposes that the exponent is also important in determining
compiler-induced numerical inconsistency, and is implemented
based on this idea. XSCOPE [15] on the other hand, utilizes an
optimization algorithm—Bayesian optimization—to identify inputs
that cause floating-point exceptions. Both XSCOPE and CIGEN
have the advantage of not requiring the source code of the program
to function, and thus not limited to compilers that have source-to-
source components.

Input Partition.Herbie [20] is one of the first tools that perform
input partition. It first randomly samples program inputs and uses
these sample inputs to gauge the extent of precision improvement.
and then rewrites numerical expressions under an input range
partition scheme (called regime), so that precision can be improved
across the whole input domain of an expression. A newer tool,
Regina [22], is based on Herbie, and introduces a regime inference
algorithm for a multiple of input parameters within respective input
ranges. It uses a two-phase, bottom-up then top-down approach
to find the most efficient regimes, which are then used in various
optimization problems, such as mixed precision tuning, or program
rewriting to improve precision.

6 CONCLUSIONS

This paper proposed a multi-phase approach to generate input
ranges that trigger compiler-induced numerical inconsistencies by
combining input-partitioned and coverage-based input sampling,
input clustering, and optimization algorithms. We implemented our
approach in the tool CIGEN. Our experimental evaluation showed
a 53.4% improvement over the state of the art in detecting inputs
triggering high inconsistency errors in 175 GSL functions 8× faster.
Further analysis of a subset of inconsistencies revealed their charac-
teristics and possible root causes, which can be helpful for develop-
ers to determine the best course to mitigate numerical issues caused
by such inconsistencies. Our code and data is publicly available at
https://github.com/LLNL/CIGEN/.

https://github.com/LLNL/CIGEN/

ICS ’24, June 04–07, 2024, Kyoto, Japan Miao et al.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory un-
der Contract DE-AC52-07NA27344 (LLNL-CONF-859884), the U.S.
Department of Energy, Office of Science, Advanced Scientific Com-
puting Research, under awards DE-SC0022182 and DE-SC0020286,
and the National Science Foundation under award CCF-1750983.

REFERENCES

[1] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs.
In OSDI. USENIX Association, 209–224.

[2] CEED. 2017. CEED/Laghos: High-Order Lagrangian Hydrodynamics Miniapp.
https://github.com/CEED/Laghos

[3] Wei-Fan Chiang, Ganesh Gopalakrishnan, Zvonimir Rakamaric, and Alexey
Solovyev. 2014. Efficient search for inputs causing high floating-point errors. In
PPoPP. ACM, 43–52.

[4] Sangeeta Chowdhary, Jay P. Lim, and Santosh Nagarakatte. 2020. Debugging and
detecting numerical errors in computation with posits. In PLDI. ACM, 731–746.

[5] Sangeeta Chowdhary and Santosh Nagarakatte. 2021. Parallel shadow execution
to accelerate the debugging of numerical errors. In ESEC/SIGSOFT FSE. ACM,
615–626.

[6] Swagatam Das and Ponnuthurai Nagaratnam Suganthan. 2011. Differential
Evolution: A Survey of the State-of-the-Art. IEEE Trans. Evol. Comput. 15, 1
(2011), 4–31.

[7] Anthony Di Franco, Hui Guo, and Cindy Rubio-González. 2017. A comprehensive
study of real-world numerical bug characteristics. In ASE. IEEE Computer Society,
509–519.

[8] Mark Galassi, Jim Davies, James Theiler, Brian Gough, and Gerard Jungman. 2009.
GNU Scientific Library - Reference Manual, Third Edition, for GSL Version 1.12.
Network Theory Ltd.

[9] Mark Galassi, Jim Davies, James Theiler, Brian Gough, Gerard Jungman, Patrick
Alken, Michael Booth, Fabrice Rossi, and Rhys Ulerich. 2002. GNU scientific
library. Network Theory Limited Godalming.

[10] Charles J Geyer. 1992. Practical markov chain monte carlo. Statistical science
(1992), 473–483.

[11] Ganesh Gopalakrishnan, Ignacio Laguna, Ang Li, Pavel Panchekha, Cindy Rubio-
González, and Zachary Tatlock. 2021. Guarding Numerics Amidst Rising Hetero-
geneity. In Correctness@SC. IEEE, 9–15.

[12] Hui Guo, Ignacio Laguna, and Cindy Rubio-González. 2020. pLiner: isolating
lines of floating-point code for compiler-induced variability. In SC. IEEE/ACM,
49.

[13] Hui Guo and Cindy Rubio-González. 2020. Efficient generation of error-inducing
floating-point inputs via symbolic execution. In ICSE. ACM, 1261–1272.

[14] John L. Gustafson and Isaac T. Yonemoto. 2017. Beating Floating Point at its Own
Game: Posit Arithmetic. Supercomput. Front. Innov. 4, 2 (2017), 71–86.

[15] Ignacio Laguna and Ganesh Gopalakrishnan. 2022. Finding Inputs that Trigger
Floating-Point Exceptions in GPUs via Bayesian Optimization. In SC. IEEE, 33:1–
33:14.

[16] Wen-Chuan Lee, Tao Bao, Yunhui Zheng, Xiangyu Zhang, Keval Vora, and Ra-
jiv Gupta. 2015. RAIVE: runtime assessment of floating-point instability by
vectorization. In OOPSLA. ACM, 623–638.

[17] Dolores Miao, Ignacio Laguna, and Cindy Rubio-González. 2023. Expression
Isolation of Compiler-Induced Numerical Inconsistencies in Heterogeneous Code.
In ISC (Lecture Notes in Computer Science, Vol. 13948). Springer, 381–401.

[18] Jonas Mockus. 1994. Application of Bayesian approach to numerical methods of
global and stochastic optimization. J. Glob. Optim. 4, 4 (1994), 347–365.

[19] Daniel Müllner. 2011. Modern hierarchical, agglomerative clustering algorithms.
CoRR abs/1109.2378 (2011).

[20] Pavel Panchekha, Alex Sanchez-Stern, James R. Wilcox, and Zachary Tatlock.
2015. Automatically improving accuracy for floating point expressions. In PLDI.
ACM, 1–11.

[21] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake VanderPlas, Alexandre Passos, David Cournapeau,
Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay. 2011. Scikit-learn:
Machine Learning in Python. J. Mach. Learn. Res. 12 (2011), 2825–2830.

[22] Robert Rabe, Anastasiia Izycheva, and Eva Darulova. 2021. Regime Inference for
Sound Floating-Point Optimizations. ACM Trans. Embed. Comput. Syst. 20, 5s
(2021), 81:1–81:23.

[23] Geoffrey Sawaya, Michael Bentley, Ian Briggs, Ganesh Gopalakrishnan, and
Dong H. Ahn. 2017. FLiT: Cross-platform floating-point result-consistency tester
and workload. In IISWC. IEEE Computer Society, 229–238.

[24] Eric Schkufza, Rahul Sharma, and Alex Aiken. 2014. Stochastic optimization of
floating-point programs with tunable precision. In PLDI. ACM, 53–64.

[25] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,
Eric Larson, CJ Carey, Ilhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul
van Mulbregt, and SciPy. 2019. SciPy 1.0-Fundamental Algorithms for Scientific
Computing in Python. CoRR abs/1907.10121 (2019).

[26] Yuanyuan Xia, Shaozhong Guo, Jiangwei Hao, Dan Liu, and Jinchen Xu. 2021.
Error detection of arithmetic expressions. J. Supercomput. 77, 6 (2021), 5492–5509.

[27] Xin Yi, Liqian Chen, Xiaoguang Mao, and Tao Ji. 2019. Efficient automated repair
of high floating-point errors in numerical libraries. Proc. ACM Program. Lang. 3,
POPL (2019), 56:1–56:29.

[28] Hengbiao Yu, Xin Yi, Banghu Yin, Fa Li, Zhenbang Chen, and Chun Huang. 2023.
Efficient Generation of Floating-Point Inputs for Compiler-Induced Variability.
In SANER. IEEE, 224–235.

[29] Daming Zou, Yuchen Gu, Yuanfeng Shi, Mingzhe Wang, Yingfei Xiong, and
Zhendong Su. 2022. Oracle-free repair synthesis for floating-point programs.
Proc. ACM Program. Lang. 6, OOPSLA2 (2022), 957–985.

[30] Daming Zou, Ran Wang, Yingfei Xiong, Lu Zhang, Zhendong Su, and Hong Mei.
2015. A Genetic Algorithm for Detecting Significant Floating-Point Inaccuracies.
In ICSE (1). IEEE Computer Society, 529–539.

[31] Daming Zou, Muhan Zeng, Yingfei Xiong, Zhoulai Fu, Lu Zhang, and Zhendong
Su. 2020. Detecting floating-point errors via atomic conditions. Proc. ACM
Program. Lang. 4, POPL (2020), 60:1–60:27.

https://github.com/CEED/Laghos

	Abstract
	1 Introduction
	2 Background and Problem Overview
	2.1 Floating-Point Types and Arithmetic
	2.2 Calculating Numerical Inconsistency
	2.3 Compiler-Induced Numerical Inconsistency

	3 Technical Approach
	3.1 General Input Sampling
	3.2 Input Clustering
	3.3 Search Within Candidate Input Ranges

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 RQ1: Effectiveness in Triggering Large Inconsistencies
	4.3 RQ2: Time Efficiency
	4.4 RQ3: Input Ranges With Inconsistency-Inducing Inputs
	4.5 Limitations

	5 Related Work
	6 Conclusions
	Acknowledgments
	References

