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A B S T R A C T

Performance optimization continues to be a challenge in modern HPC software. Existing performance optimiza-
tion techniques, including profiling-based and auto-tuning techniques, fail to indicate program modifications
at the source level thus preventing their portability across compilers. This paper describes Muppet, a new
approach that identifies program modifications called mutations aimed at improving program performance.
Muppet’s mutations help developers reason about performance defects and missed opportunities to improve
performance at the source code level. In contrast to compiler techniques that optimize code at intermediate
representations (IR), Muppet uses the idea of source-level mutation testing to relax correctness constraints and
automatically discover optimization opportunities that otherwise are not feasible using the IR. We demonstrate
the Muppet’s concept in the OpenMP programming model. Muppet generates a list of OpenMP mutations that
alter the program parallelism in various ways, and is capable of running a variety of optimization algorithms
such as delta debugging, Bayesian Optimization and decision tree optimization to find a subset of mutations
which, when applied to the original program, cause the most speedup while maintaining program correctness.
When Muppet is evaluated against a diverse set of benchmark programs and proxy applications, it is capable
of finding sets of mutations that induce speedup in 75.9% of the evaluated programs.
1. Introduction

Performance optimization continues to be a challenge in modern
HPC software. The adoption of multi-core heterogeneous systems and
the use of multi-process and multi-threaded programming models to
fully utilize modern architectures are some of the factors that limit the
ability of developers to solve performance issues; these issues can result
in poor user experience, lower system throughput, limit scalability, and
a waste of computational resources [1–3].

Problems with Existing Techniques. A lot of work has been
proposed to identify performance issues and several tools are used
in current HPC production environments to analyze the performance
of applications [4–7]. However, the process of isolating performance
problems and/or generating tests to identify them is still mostly a
manual process. Most performance optimization techniques focus on
highlighting performance hotspots in the program, but ultimately they
rely on programmers to identify code modifications that fix a per-
formance problem or improve overall performance. Other approaches
are based on the concept of quantifying hardware or runtime system
events [8–10], but metrics of these events do not directly relate to
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program performance, and these approaches do not explicitly inform
the programmer how to modify the code to improve performance.
Compiler optimizations improve performance usually at the interme-
diate representation (IR) level; however, reasoning about correctness
at the IR level is much more difficult than at the source level. As
a result, compiler optimizations can leave optimization opportunities
on the table. Moreover, IR-level optimizations are not portable across
compilers.

We could potentially solve performance problems given accurate
performance models for each available platform and application. If
performance models are available, we could simply check if application
behavior falls into the bounds of such models. However, such an ideal
mechanism is hard to realize in practice as performance models are
notoriously difficult to build accurately given the complexity of the
HPC software stack and underlying hardware. There are solutions to
build performance models for specific aspects of the hardware and
applications [11–13], but they are usually not composable and thus of
little practical use in modeling an entire application and platform.
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Our Contributions. We present an approach based on mutation test-
ng [14] to identify source code changes, or mutations, that (1) improve
erformance, and (2) help developers reason about performance at the
ource-code level, in contrast to IR- or assembly-level like in existing
ethods. Since such an approach is based on source modifications, it

s portable across compilers.
Mutation testing has been proposed to identify correctness faults [14],

nd assumes that a syntactic change (a mutant) along with an ex-
loration campaign of multiple mutants can help discover program
efects faster than traditional methods. While some previous work has
pplied mutation testing to solve performance defects [15], mutation
esting for performance has not been applied on parallel code and/or
PC programs. We demonstrate our approach in the OpenMP program-
ing model, although our approach is also applicable to other HPC
rogramming paradigms such as CUDA and OpenACC.

We implement our approach in the framework named Muppet
Mutation-Utilized Parallel Performance Enhancement Tester). First,
uppet generates a list of OpenMP mutations, which are defined as

ither a change in an existing OpenMP directive in the program that
ould change the performance of the code block that the directive
argets, or adding a new OpenMP directive that introduces parallelism
o existing serial code. Muppet considers only mutations that are not
ikely to change the correctness of the code block. Next, Muppet con-
iders different optimization algorithms, such as delta debugging [16],
ayesian optimization (BO) [17], and decision tree optimization [18],
o find a subset of mutations that, when applied to the original pro-
ram, causing the highest speedup. We implement Muppet in the
lang/LLVM front-end and evaluate it in a variety of programs, includ-

ng benchmark programs like the Rodinia benchmarks [19], the NAS
arallel Benchmarks [20], HPCG [21], and four scientific applications
LULESH [22], CoMD [23], CoSP2 [24], and the CLOUDSC cloud
hysics mini-app [25]).

In summary, our contributions are:

• We present a source-level approach that uses mutation testing to
optimize HPC code. Our approach considers five classes of source
mutations and applies them in OpenMP directives. To the best of
our knowledge, we are the first to explore using mutation testing to
optimize OpenMP code (Section 3).

• We design and implement our idea in the Muppet framework
via the Clang/LLVM front-end. Our approach integrates Muppet
with several optimization algorithms, such as delta debugging,
Bayesian optimization and decision tree optimization. The output
of Muppet is a set of source modifications, or mutations, that
produce a maximum speedup among the explored mutations,
without affecting correctness (Section 4).

• We evaluate Muppet on several benchmarks and proxy appli-
cations. We demonstrate that Muppet is capable of identifying
mutations that improve performance in 75.9% of the evaluated
programs, with the best speedup of 3.57x (Section 5).

Comparison to Previous Work. An earlier version of our ap-
roach was published in [26]. The approach has been expanded in
his paper and a more comprehensive experimental evaluation has been
onducted with new key findings. New insights include:

• A new OpenMP mutation focusing on thread affinity management
has been added in Muppet: schedule.

• A new optimization algorithm, decision tree optimization, has
been integrated into Muppet and evaluated for its efficacy.

• A set of new programs, including benchmark programs and sci-
entific applications, is evaluated alongside programs tested in
the original paper, with varying levels of code complexity. The
maximum speedup discovered is higher than in the previous

paper. p
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• In addition to comparing speedups discovered by different algo-
rithms, we also compare the time used to run different algorithms
to find these speedups. With this information, we can illustrate a
more complete picture of how Muppet performs across programs
from different knowledge domains, with different data structures,
and with varying time complexity.

• We provide new detailed analysis of source code and associ-
ated OpenMP mutations on a set of selected programs that have
performance speedup discovered.

. Overview

In this section, we describe the philosophy of our approach, provide
ackground information on mutation testing, and provide a simple mu-
ation example in a matrix multiply kernel that improves performance.

.1. Approach’s philosophy

Existing approaches to isolate performance issues are difficult to
se in practice. A number of performance problems can be fixed by
hanges in the source code; however, existing methods do not directly
oint to developers’ source modifications that fix such issues. Compilers
ptimize code at the IR level but such solutions are not portable across
ompilers and make it harder to reason about correctness than solutions
ased on source modifications.

We believe that tools and techniques for performance optimization
hould have the following features:

• Fine granularity detection: tools should pinpoint, with fine
granularity, the location (code line) of performance issues or
potential performance improvements.

• Guided fixes: the approach should help programmers under-
stand and reason about performance defects—without a good
understanding, it is hard to solve the problem or avoid it in the
future.

• Automatic recommendations: the approach should automati-
cally suggest code modifications that improve performance or fix
a performance problem.

We designed Muppet using the above criteria to identify changes in
penMP directives that improve performance.

.2. Mutation testing for performance

.2.1. Challenges
The key idea of Muppet is to perform small changes in the code,

alled mutations, and use exploratory algorithms to search for cases
here mutations improve performance or fix a performance problem.
utation testing has been studied before to detect faulty programs by

njecting small syntactical changes that expose correctness defects [14].
he idea of mutation testing is to generate sufficient data to expose
eal software defects in the code. However, it is challenging to use
raditional mutation testing in isolating performance defects because
he syntactic changes could create faults, i.e., breaking the semantics
f the program and producing incorrect programs.

.2.2. Our solution
Inspired by the previous work on mutation testing, we propose a

ifferent approach: to inject only mutations that are semantically correct
nd do not yield an incorrect program for the purpose of exposing perfor-
ance defects or speedup opportunities. Semantically correct mutants, or
quivalent mutants, are considered problematic for traditional mutation
esting because by definition, they cannot fail the test suite, so they
hould be avoided to increase the effectiveness of mutation testing.
n contrast, our approach explores semantically correct mutations, or

weaker form of mutations that successfully pass correctness tests,
o identify any mutations that increase performance, thus indicating

erformance defects.
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2.3. Mutation example

Here, we present a synthetic matrix-multiplication example, shown
in Listing 1, that demonstrates Muppet’s capabilities—when we apply
Muppet, it can find a set of mutations that yields faster code execution.

Listing 1: Example code with a mutation found byMuppet that improves
performance.
1 #define ARRAY_SIZE (2048)
2 double A[ARRAY_SIZE][ARRAY_SIZE];
3 double B[ARRAY_SIZE][ARRAY_SIZE];
4 double C[ARRAY_SIZE][ARRAY_SIZE];
5
6 int main(void) {
7 // initialize array and timer setup

omitted
8 float var = 2.3f;
9 #pragma omp parallel for shared(var)

10 // mutation adds an OpenMP directive

11 #pragma omp tile sizes(16,16,16)
12 for (int i = 0; i < ARRAY_SIZE; ++i)
13 for (int j = 0; j < ARRAY_SIZE; ++j)
14 for(int k = 0; k < ARRAY_SIZE; ++k) {
15 C[i][j] += var*A[i][k]*B[k][j];
16 }
17 // end processing omitted
18 }

Originally, the code has only the OpenMP parallel for direc-
tive to parallelize the loop. Muppet applies mutations to the existing

penMP directives found in the code. Note that while Muppet only
considers semantically correct mutations (and are likely to produce
a correct program), it relies on existing correctness checks of the
program, as shown in Section 5.1.1 for the evaluated programs. Possible
mutations are shown in Fig. 2 as references. When we run Muppet on
his example with delta debugging, after 20 tryouts, Muppet reports a

mutation that, when applied to the program, improves performance.
With BO, it takes 66 tryouts to finish the optimization process; but
the mutation was reported with 11 tryouts. The identified mutation is
highlighted in the source code. In this simple example, the mutation is
the addition of the OpenMP tile construct, which converts the three-
dimensional loop space in this program into smaller-sized ‘‘tiles’’ in
16 × 16 × 16 increments and suggests to the compiler that each tile
is to be assigned to one OpenMP thread. In the end, Muppet reports to
the developer that adding this construct to the loop introduces a 18.84x
speedup, from 7.116801 s to 0.377674 s.

3. Approach

3.1. Problem statement

Given an OpenMP program 𝑃 with running time 𝑇 , Muppet analyzes
the program and generates a set of mutations, 𝑀 = {𝑚1, 𝑚2,… , 𝑚𝑛},
which potentially could induce program speedup. We define the pro-
gram running time for the original variant program as:

𝑇 = 𝑃 (∅)

We define the running time for a variant program as:

𝑇 ′ = 𝑃 (𝑀 ′),where 𝑀 ′ ⊆ 𝑀, and 𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒(𝑃 ,𝑀 ′) = 𝑇 𝑟𝑢𝑒.

We define the ideal minimum program running time as:

𝑇𝑚𝑖𝑛 = 𝑃 (𝑀𝑚𝑖𝑛),
where 𝑀𝑚𝑖𝑛 ⊆ 𝑀,

and 𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒(𝑃 ,𝑀𝑚𝑖𝑛) = 𝑇 𝑟𝑢𝑒,

and ∀𝑀 ′ ⊆ 𝑀, 𝑇 ′ >= 𝑇𝑚𝑖𝑛

The goal of Muppet is find a subset of 𝑀 , 𝑀𝑚𝑖𝑛′ , with 𝑇𝑚𝑖𝑛′ as close to
𝑇 as possible.
𝑚𝑖𝑛

3 
3.2. Tool workflow

The overall workflow of Muppet is illustrated in Fig. 1. The purposes
of these modules are described below:

• Mutation generator analyzes the program and finds a set of source
code mutations, which can potentially be applied to change the
OpenMP parallelism of the program.

• Transformer generates a program variant with a subset of muta-
tions found in the Mutation generator module.

• Tester runs the mutated programs from Transformer and tests the
performance speedup and correctness of the mutated variant.

• Optimizer applies a user-specified optimization algorithm to find
the minimum of the function 𝑇 ′ = 𝑃 (𝑀 ′).

Next, we delve into the details of these modules, following the order
as they appear in Fig. 1.

3.3. Mutation generator

The Mutation Generator module traverses the abstract syntax tree
(AST) of the program, looking for source code locations that potentially
can be mutated so that program parallelism is changed. The time
complexity of this step is (𝑛) where 𝑛 is the number of statement nodes
on the AST. The mutators in Muppet focus on mutating parallel/loop
OpenMP constructs such as the parallel directive, for directive, or
the parallel for directive. All of these directives specify a source
code region to be executed in parallel, but the parallelism may not be
high enough to utilize all available cores for the OpenMP program.
Muppet also looks for the beginning of for loops for both SIMD
mutations. Lastly, tiling mutations may be added in case tiling can
be performed in an inner part of a multiple-dimension parallel loop.

3.3.1. Mutation classes
There are five classes of mutations possible to apply to certain

source code locations:

• Collapse Mutations add a collapse clause to a multiple-
dimension parallel for loop. Collapse clauses may poten-
tially improve parallelism by having more iterations, thus higher
hardware thread usage, at the top level of the loop.

• SIMD Mutations have two forms: adding a simd clause to an
OpenMP parallelism-related directive such as a parallel for
loop or a omp for loop; or adding a simd directive to a for
loop. SIMD clauses or directives hint at the compiler to check
if there is a possibility to vectorize the loops and apply SIMD
vectorization if possible.

• Tiling Mutations add tile directives at the top of a multiple-
dimension OpenMP loop. Tile directives split the loop space into
smaller-sized ‘‘tiles’’, and each tile is ideally only accessed by one
OpenMP thread. This design can potentially improve cache local-
ity depending on how the data within memory is accessed within
the loops, and thus may also introduce performance speedup.
Due to the difficulty in determining loop size at compile time,
Muppet only supports setting a fixed set of differently sized tiles
as different mutations. For example, we can only set the tile
size as a power of 8, 16, or 32. Given the limitations, users can
still see from the optimization results whether using a smaller or
larger-sized tile can have a higher speedup.

• Firstprivate Mutations put read-only shared variables into a
firstprivate clause for an OpenMP parallel region, so that
these variables are kept a copy in each parallel thread. This is
to reduce data dependency between parallel threads when these
variables are accessed.
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Fig. 1. The workflow of Muppet. Red texts in italic indicates the mutation is applied, or the source file is changed.
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• Schedule Mutations add a schedule clause to an OpenMP
parallel or parallel for directive. OpenMP by default
statically assigns loop iterations to OpenMP threads when running
a parallel block. This mutation modifies the scheduling behavior
of OpenMP programs. Similar to tiling mutations, Muppet supports
two different schedule mutations: dynamic- and auto-scheduling,
implemented as two different mutations for each parallel block.

For all mutations, once a language construct of interest is detected,
the Mutation Generator module then checks the associated source code
around the current language construct. If the source code around it sat-
isfies certain statically defined criteria (see Section 3.3.2), then unique
information regarding the current mutation, such as source location,
the way source code is modified with this mutation (insert before a
source code location, insert after a source code location, modify a
source code range), and the class of the mutation is added to the list of
mutations. The algorithm for this process is shown in Algorithm 1.

3.3.2. Criteria selection
The criteria for each class of mutation follow the syntax of OpenMP

language specifications. These criteria can be expanded for any new
class of mutations added. A list of criteria is below:

• Mutations should not be added in a for loop that has statements
that change the control flow, such as a break, continue and
a return statement. OpenMP parallel loops in existing code
already follow this rule, but other standalone for loops may not,
so condition checking is necessary.

• Tiling and SIMD mutations should not be added when the affected
OpenMP block contains specific OpenMP directives such as a
critical, barrier, or a master directive.

• There should not be OpenMP blocks inside SIMD directives, oth-
erwise such mutations should not be added.

• In general, there should only be SIMD directives inside a SIMD
directive, and no other directives are allowed.

We illustrate OpenMP mutations that can be applied to in the
previously shown matmul example in Fig. 2. The one that shows the
highest speedup in matmul is the tiling mutation.

3.4. Optimizer

Once a list of mutations is generated, it is exported to the Optimizer.
This module runs an optimization algorithm specified by the end user
to find the minimum point of 𝑇 ′ = 𝑃 (𝑀 ′). During the optimization
 w

4 
Algorithm 1: The mutation generator algorithm.
1 Function GenerateMutations(𝐴𝑆𝑇):
2 𝑀 = ∅;

// Traverse the AST.
3 foreach 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 in 𝐴𝑆𝑇 do
4 if 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 is an OpenMP directive then
5 if can add collapse mutation then
6 𝑀 = 𝑀 ∪CollapseMutation(𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡);

7 if can add SIMD mutation then
8 𝑀 = 𝑀 ∪ SIMDMutation(𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡);

9 if can add tiling mutation then
10 𝑀 = 𝑀 ∪TilingMutation(𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡);

11 if can add firstprivate mutation then
12 𝑀 = 𝑀 ∪ FirstprivateMutation(𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡);

13 if can add schedule mutation then
14 𝑀 = 𝑀 ∪ ScheduleMutation(𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡);

15 if 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 is a for loop then
16 if can add SIMD mutation then
17 𝑀 = 𝑀 ∪ SIMDMutation(𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡);

18 if can add tiling mutation then
19 𝑀 = 𝑀 ∪TilingMutation(𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡);

20 return 𝑀

process, it finds specific points on the 𝑇 ′ = 𝑃 (𝑀 ′) function by selecting
subset of mutations, sending these mutations to the Transformer

nd Tester module, and receiving 𝑇 ′ from the Transformer and Tester
odule once the mutated program has finished execution and running

ime statistics are collected.
Muppet supports three optimization algorithms: delta debugging

16], Bayesian Optimization [17], and decision tree optimization [18].
he goal of all three algorithms, albeit vastly different in implemen-
ation, is to find the subset of source mutations that would introduce
aximum speedup. The inclusion in Muppet of a variety of algorithms

hows how algorithms with vastly different original purposes can solve
he same problem in different ways with varying efficacy. Muppet can
lso be extended to run other optimization algorithms such as differ-
ntial evolution or simulated annealing. The details for each algorithm
nd how they are adapted to Muppet are detailed below.

.4.1. Delta debugging
Delta debugging (DD) is an algorithm that was originally developed

s a software testing algorithm to isolate bugs inside a program, which
s then adapted into finding speedup in program variants in previous
ork such as Precimonious [27] with regards to precision tuning. We
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Fig. 2. Classes of mutations in Muppet.

ollow the LCCSearch algorithm in [27], where a change set in our
daptation of the algorithm is defined as the set of mutations that are
pplied to the original program, and the outputs are a minimal change
et which causes speedup.

To illustrate how delta debugging is adapted to Muppet, we show
wo simple examples in Fig. 3. The change set is initially assigned as
he set of all mutations. Then Muppet starts testing mutated program
ariants with all mutations, with the first half of mutations, and with
he second half of mutations. In (a), the second half of mutations cause
peedup, thus the second half of mutations become the new change
et, and then this new change set is split in two halves and test their
erformance speedup respectively. In (b), none of the halves cause
peedup, thus Muppet split the mutations into 4 parts instead of 2 and
est each part and its complement set, respectively, as shown in Round
. If a single part among these 4 parts causes speedup, then similar
o (a), that part becomes the new change set and is split again in two
or further testing. If a complement set (3 parts in this case) causes
peedup, as shown in the figure, this means that excluding that one
art improves performance, thus the change set becomes the remaining
parts for further performance testing, as shown in Round 4. The

lgorithm finishes running when every part in the algorithm is a single
utation and cannot be split further.

The time complexity of delta debugging is 𝑂(𝑛 ⋅ 𝑙𝑜𝑔(𝑛)) where 𝑛 is
the number of possible mutations in the average case; in the worst case,
the time complexity is 𝑂(𝑛2).

3.4.2. Bayesian optimization
Bayesian Optimization (BO) is a common optimization algorithm

that approximates a computationally expensive function, such as the
programs tested in Section 5. In Muppet, Gaussian processes are used
as surrogate models to approximate program time characteristics, an
acquisition function is used to predict the next input to be tested for
performance, and the result of the next input (running time) is then sent
back to improve the surrogate model. BO does not have the assumption
5 
of the function forms, which makes it an appropriate algorithm to use
in Muppet.

There is one difficulty in adapting BO to Muppet: BO requires the
function to be in the form of 𝑦 = 𝑓 (𝑥) where 𝑥 is a list of number
inputs, while 𝑦 is a floating-point output (in our case the run time of
the program). Meanwhile the input parameter of the function to be
optimized, 𝑇 ′ = 𝑃 (𝑀 ′), is a subset of mutations. Therefore we optimize
′ = 𝑃 (𝑀𝑏′) instead where:

𝑏′ = {𝑚𝑏1, 𝑚𝑏2,… , 𝑚𝑏𝑛}

𝑏𝑖 =

{

1, if 𝑚𝑖 ∈ 𝑀 ′

0, otherwise

In this way, we assign 0 or 1 for each element in the set of mutations
ccording to whether the mutation is in the subset. For example, if

= {𝑚1, 𝑚2, 𝑚3, 𝑚4}, 𝑀 ′ = {𝑚1, 𝑚3}, then 𝑀𝑏′ = {1, 0, 1, 0}. The
onverted list of 0 and 1 can be accepted by BO as input parameters.

The computational complexity of Bayesian optimization is 𝑂(𝑛3)
here 𝑛 is the number of mutations, however, some methods reduce

he computation time, as shown in [28].

.4.3. Decision tree optimization
Similar to BO, decision tree optimization (FO) also uses a surrogate

odel to approximate an expensive function, and an acquisition func-
ion to estimate the next input for running time evaluation, and the
unning time output is also sent back to improve the surrogate model.
owever, in this case, a decision tree regression model is used instead.
e decide to use random forest [29] as the surrogate model here. Also

imilar to BO, FO optimizes 𝑇 ′ = 𝑃 (𝑀𝑏′) function by assigning 0 or 1
or each mutation in the mutation set.

The computational complexity of decision tree optimization using
andom forest is 𝑂(𝑛 ⋅ 𝑙𝑜𝑔(𝑛) ⋅ 𝑑 ⋅ 𝑘) where 𝑛 is the number of points in
he training set, 𝑑 is the number of mutations, and 𝑘 is the number of
ecision trees in the forest.

.5. Transformer and tester

The Transformer and Tester modules read the list of mutations from
he Optimizer module, mutate the program into a variant, and run the
ariant to see if there is any speedup while maintaining the correctness
f the program.

.5.1. Compilation and conflicts checks
Even though there are already criteria placed in the Mutation

enerator module for each mutation class to ensure that all mutations
enerated are syntactically correct, there are still situations where two
utations, when applied to the same programs at the same time, cause

onflicts between them. If Muppet lets these conflicts pass without
hecking during the transformer phase, it would cause a large number
f mutated program variants that do not compile. Thus, to save exe-
ution time, when the Transformer module traverses the program, it
lso statically checks and circumvents certain conflicts. These conflict
hecks can also be customized in the case where new classes of muta-
ions are implemented or new conflicts are discovered during testing.
xisting conflict checks in Muppet are listed below:

• An active SIMD directive mutation should not be inside an active
collapse or tiling mutation, and will be discarded.

• An active tiling directive mutation should not be inside an active
SIMD mutation, and will be discarded.

• Every variable inside an OpenMP parallel region is checked. If
the variable is read-only, and not in a list of existing private
variables, then it will be included in the list of variables in the
firstprivate mutation.
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Fig. 3. Two simple examples illustrating the delta debugging algorithm.
4. Implementation details

4.1. Tools used to implement Muppet

Muppet is implemented with a variety of programming languages
and toolsets. The Mutation Generator and the Transformer modules
are implemented via Clang plugins. Given the nature of our work on
source-level OpenMP mutations, Muppet is compatible with programs
compiled with any C/C++ compiler as long as it supports OpenMP 5.0.1
There are a few mechanisms in the Clang compiler architecture that
are capable of performing source-to-source code transformation besides
Clang plugins, such as libtooling and libclang. Sending Clang plugin
calls as compiler parameters to the build system ensures that all source
files are processed by the Mutation Generator and the Transformer
modules. Muppet only requires minimal changes to the build scripts for
it to work on new programs, which is described in Section 4.3.

The Optimizer and Tester modules, and the overarching framework
managing the communication between modules, on the other hand, are
implemented in Python 3.10. This is done to leverage the existence of a
mature set of Python optimization modules such as scikit-optimize [30].

4.2. Modular extension

Since Muppet uses a modular approach, each of the four modules
shown in Fig. 1 can be replaced to implement an analogous func-
tionality. Optimization algorithms can be replaced, as mentioned in
Section 3.4. Even language support can be extended; while currently
Muppet targets C/C++ programs with OpenMP language constructs, it
is possible to target FORTRAN programs by rewriting the Mutation
Generator and Transformer modules with a source-to-source FORTRAN
compiler such as ROSE [31].

4.3. Making Muppet work with your own program

For better management of programs, Muppet calls a customized
version of the FAROS build system [32]. Muppet accepts a YAML config
file that contains program entries, with commands for a variety of
functionalities such as analyzing, transforming, building and running
the specified program. With FAROS, it is easy to add new programs to
perform OpenMP mutation testing for speedup by simply adding new
entries into the YAML config file.

1 By disabling certain classes of mutations such as tiling, Muppet is compat-
ible with programs built with compilers that only support lower versions of
OpenMP such as 4.5, although the speedup discovered would potentially be
lower.
6 
4.3.1. Entries and correctness
An example entry for a locally stored simple matrix multiplication

program is shown in Listing 2. It sets up commands for each step used
in Muppet, such as building, calling plugins for mutations, running the
program, extracting running time statistics from program output, and
cleaning. Note that the call_plugin part of the YAML file was not
originally a part of FAROS and is an addition of Muppet to FAROS
to analyze and transform program source code. In addition to the
YAML file, the only changes required for the matmul source code is
(a) modify the build scripts (Makefile targets func_analysis and
trans_mutations in this case) so that it accepts parameters for
calling the Clang plugins, and (b) add correctness check code that
parses program output and determines if the mutated program variant
still runs correctly.

Listing 2: YAML config file for matmul.

1 matmul: fetch: ’cp -r ../../../extra/matmul
.’

2 build_dir: ’matmul’
3 build: {
4 omp: [’make CC=clang++ OPT_LEVEL=3 OMP=1

’],
5 }
6 call_plugin: {
7 analysis: [’make func_analysis OMP=1’],
8 mutate: [’make trans_mutations OMP=1’],
9 }

10 copy: [’matmul’ ]
11 bin: ’matmul’
12 run: ’./matmul’
13 input: ’’
14 measure: ’Work consumed (\d+\.\d+) seconds

’
15 clean: ’rm -r *.*; cp ../../../../extra/

matmul/*.* .’

4.4. Customizing Muppet runtime parameters

User can select between delta debugging, Bayesian optimization and
decision tree optimization when using Muppet. Bayesian optimization
and decision tree optimization are implemented with gp_minimize
and forest_minimize functions in scikit-optimize, while delta de-
bugging is implemented from scratch, adapting the algorithm described
in Precimonious [27], since it has no publicly available Python imple-

mentations.
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Table 1
Problem size and running time for evaluated programs.

(a) Benchmarks (Rodinia, NPB-CPP, HPCGs)

Program Parameters Min. Time (s) Avg. Time (s)

backprop 16777216 13.270 13.506
cfd fvcorr.domn.193K 18.527 18.535

b+tree file mil.txt
command command.txt

1.536 1.539

heartwall test.avi 20 14 2.259 2.266

hotspot 1024 1024 16384 14
temp_1024 power_1024

3.896 3.921

hotspot3D 512 8 1000 power_512 × 8
temp_512 × 8

2.726 2.737

kmeans kdd_cup 1.727 1.752
lavaMD -cores 14 -boxes1d 32 4.177 4.191
leukocyte 5 14 testfile.avi 1.481 1.549
lud -n 14 -s 3200 5.638 5.847
myocyte 1000 500 1 14 5.186 5.221
nn filelist.txt 10000 30 90 1.825 1.835
nw 32000 10 14 1.332 1.346

particlefilter -x 512 -y 512 -z 100
-np 10000

2.936 2.991

pathfinder 1000000 100 2.992 3.066

srad 1024 1024 0 127 0 127 1 0.5
100

3.443 3.476

streamcluster 10 20 256 65536 65536
1000 none output.txt 14

10.780 11.066

FT CLASS=A 1.257 1.262
LU CLASS=A 4.933 4.956
MG CLASS=A 3.617 3.704
SP CLASS=A 31.526 31.675
BT CLASS=A 42.574 42.590
CG CLASS=B 22.512 22.735
EP CLASS=B 6.244 6.248

HPCG 96 96 96 15.548 15.620

(b) Scientific applications

Program Parameters Min. Time (s) Avg. Time (s)

LULESH -i 1500 -s 35 11.346 11.740
CoMD -e -i 1 -j 1 -k 1-x 20 -y 20 -z 20 2.304 2.418
CoSP2 –hmatName hmatrix.1024.mtx–N 12288 –M 16384 4.266 4.312
CLOUDSC 14 100 4 (500 iterations) 8.160 8.187
Since the running time for each program run may have variabil-
ty that should not be counted as speedup, to reduce the impact of
uch variability affecting the reported speedup, users can customize
uppet parameters to change how it measures running time. The times

arameter instructs Muppet to run a specified number of repetitions
or each variant, and collect running times for each run; the shuffle
witch, only available for delta debugging, randomly shuffle the order
f mutations so that the delta debugging algorithm partitions these
utations differently each time (users can still specify the same random
umber generator seed for the same shuffle result). Lastly, users can
hoose between using the minimum running time in all repetitions,
r using the average running time, as the fitness function for all
ptimization algorithms. Our evaluation of Muppet uses some of these
arameters which are discussed later in Section 5.1.1.

. Experimental evaluation

This evaluation answers the following research questions:

Q1 DoesMuppet discover source code mutations that induce speedup
for OpenMP programs, and how does it perform with different
algorithms?

Q2 How does Muppet compare when using different optimization
algorithms, with limited time budget/tryouts?

Q3 What kind of mutations does Muppet discover that cause signif-
icant speedup?
7 
5.1. Evaluation setup

5.1.1. Benchmarks
We use a variety of C/C++ OpenMP programs to evaluate Muppet.

These programs are from different fields of scientific computing, utilize
a variety of computational kernels, and have different levels of OpenMP
parallel optimizations: some are reference implementations with the
purpose of maintaining the correctness of the program, while others are
manually optimized code. The programs tested include benchmark pro-
grams like Rodinia benchmarks [19], NPB-CPP [20], HPCG [21], and
scientific applications such as LULESH [22], CoMD [23], CoSP2 [24],
and the CLOUDSC cloud physics mini-app [25].

Among the benchmarks tested, Rodinia is a benchmark suite de-
signed to test heterogeneous accelerators, but it also contains OpenMP
version of their benchmarks for evaluation on the CPU side. In our
evaluation, we choose 17 OpenMP benchmarks which run for a long
enough time for performance measurement to be possible. They cover
a wide range of topics, from medical imaging, fluid dynamics, data
mining, to linear algebra. NPB-CPP is the C++ version of NAS Paral-
lel Benchmarks [33] and supports various programming frameworks
on shared-memory architectures including OpenMP. These benchmark
programs focus on computational fluid dynamics (CFD). HPCG is a
benchmark program that performs multigrid preconditioned conjugate
gradient iterations, and it is a standard program to measure the per-
formance of HPC systems. The problem sizes and original running time
for these benchmark programs tested are shown in Table 1(a). We use
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Table 2
Mutation speedup discovered by delta debugging (DD), Bayesian optimization (BO), and decision tree optimization (FO). Results that are not considered as having speedup are
highlighted in red.

Program Min. Time improvement Avg. Time improvement No. of mutations (collapse/simd/firstprivate/tile/schedule)

DD BO FO DD BO FO Original DD BO FO

backprop 3.39% 3.60% 4.07% 5.09% 5.31% 5.67% 1/28/1/6/4 1/0/0/1/0 1/16/0/1/1 1/10/0/1/2
cfd 2.84% 2.84% 3.64% 2.60% 2.39% 3.20% 1/16/5/39/10 0/0/0/1/1 1/10/1/11/3 0/8/3/11/4
b+tree 0.38% 0.43% 0.47% 0.41% 0.47% 0.55% 0/30/2/6/4 0/2/0/0/0 1/13/1/0/1 0/11/2/2/2
heartwall 4.76% 4.97% 5.00% 4.70% 5.02% 5.04% 0/50/1/3/2 0/2/0/0/0 0/27/1/1/1 0/25/1/1/0
hotspot 9.34% 9.42% 9.42% 8.84% 9.53% 9.52% 0/5/0/0/0 0/3/0/0/0 0/5/0/0/0 0/4/0/0/0
hotspot3D 254.58% 257.59% 255.60% 254.64% 256.71% 255.26% 0/7/1/3/2 0/3/1/1/1 0/4/1/1/1 0/4/1/0/1
kmeans 2.13% 3.55% 1.00% 2.79% 3.03% 1.15% 0/22/0/3/2 0/16/0/0/0 0/12/0/0/0 0/10/0/1/1
lavaMD 0.58% 0.90% 0.78% 0.55% 0.83% 0.82% 0/12/1/18/2 0/6/0/3/0 0/7/1/6/1 0/5/0/3/1
leukocyte 2.63% 3.04% 3.47% 6.40% 6.37% 6.45% 0/135/3/54/4 0/9/0/0/0 0/53/1/17/2 0/67/1/16/1
lud 36.48% 38.33% 26.01% 27.80% 35.12% 22.02% 0/34/2/33/4 0/4/1/4/0 0/21/1/9/2 0/14/1/8/2
myocyte 3.67% 3.64% 4.38% 2.99% 3.10% 3.21% 0/41/2/66/2 0/40/2/22/1 0/20/0/16/0 0/24/1/19/1
nn 16.65% 17.03% 16.90% 16.52% 16.85% 16.66% 0/4/1/3/2 0/2/1/1/0 0/2/0/1/1 0/2/1/1/0
nw 0.39% 0.27% 1.56% −0.52% 0.02% 1.72% 0/19/0/33/2 0/0/0/0/1 0/13/0/9/0 0/6/0/10/0
particlefilter 0.31% 0.15% 0.01% 1.73% 1.60% 1.51% 0/35/10/30/20 0/32/10/10/10 0/17/7/7/9 0/16/7/10/9
pathfinder 0.38% 0.40% 0.35% 2.58% 2.53% 2.38% 0/7/1/3/2 0/7/1/1/1 0/4/1/1/1 0/3/1/1/1
srad 1.74% 1.26% 1.26% 1.62% 1.62% 1.70% 2/9/2/6/4 0/1/0/0/1 0/7/0/2/2 0/6/2/2/1
streamcluster 2.30% 4.59% 3.12% 4.73% 4.85% 4.53% 0/25/2/0/0 0/2/0/0/0 0/15/0/0/0 0/13/1/0/0

BT 0.24% −1.86% −1.38% 0.14% −1.84% −1.40% 44/218/2/381/108 13/118/2/66/23 24/111/1/111/40 22/103/2/109/40
CG 1.28% 5.86% 5.02% 1.57% 2.92% 2.41% 0/18/11/27/14 0/18/9/9/7 0/9/5/9/7 0/9/8/9/5
EP 0.12% 0.11% 0.10% 0.11% 0.10% 0.10% 0/9/1/24/2 0/5/1/4/0 0/7/0/8/1 0/1/0/6/1
FT 1.80% 1.88% 1.25% 1.91% 1.88% 1.43% 1/42/5/45/12 0/6/1/1/1 0/27/3/11/3 1/23/4/10/3
LU 1.55% 2.62% 2.96% 1.43% 2.96% 2.88% 3/100/6/186/20 1/23/1/15/2 0/54/4/58/7 0/51/5/59/9
MG 15.30% 15.28% 15.67% 17.85% 17.90% 18.23% 7/66/8/39/20 3/28/4/6/3 5/34/5/12/7 4/32/6/10/9
SP 5.86% −1.71% −0.34% 5.89% −1.65% −0.81% 64/267/3/396/140 0/1/0/2/1 30/143/3/115/56 23/135/1/114/59

HPCG 4.19% 13.91% 13.21% 2.34% 8.09% 7.73% 0/63/13/81/26 0/4/0/5/0 0/36/7/25/12 0/36/7/25/12

LULESH 3.87% 2.32% 2.49% 6.29% 5.36% 5.66% 0/95/0/222/76 0/13/0/12/8 0/42/0/60/28 0/49/0/62/32
CoMD 3.34% 3.91% 4.36% 7.37% 7.86% 9.03% 0/78/13/132/30 0/24/3/10/4 0/32/8/36/12 0/47/6/36/12
CoSP2 3.80% 4.55% 6.27% 4.22% 5.10% 5.46% 0/67/9/117/22 0/17/0/12/1 0/32/5/34/10 0/44/4/36/8
CLOUDSC 1.07% 1.07% 1.20% 1.16% 3.46% 1.28% 0/58/0/111/0 0/28/0/19/0 0/34/0/34/0 0/33/0/33/0
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a combination of existing and customized result verification routines to
determine the correctness of the results from mutated program variants.

Among the scientific applications tested, LULESH is a proxy appli-
cation simulating the Shock Hydrodynamics Challenge Problem. CoMD
is a proxy application implementing classical molecular dynamics al-
gorithms and workloads as used in materials science. CoSP2 is a ref-
erence implementation for quantum molecular dynamics (QMD) elec-
tronic structure code. Lastly, CLOUDSC is a standalone mini-app of
the ECMWF cloud microphysics parameterization for its Integrated
Forecasting System (IFS). Evaluating these programs may show the
efficacy of Muppet in helping software developers in scientific comput-
ng optimize the parallel performance of their programs. Again, the
roblem sizes and original running time for these applications tested
re shown in Table 1(b). As for correctness checks, for both LULESH
nd CoMD, we use the approach presented in [34] to determine the
orrectness of the program. For LULESH, we consider iteration count,
inal origin energy, and TotalAbsDiff as the output; for CoMD, we
se the final energy as output. For CoSP2, we consider the AAN and
raction values to determine whether the mutated program variant runs
orrectly. And lastly, for CLOUDSC, we use its internal verification
outine for this purpose.

.1.2. Algorithm parameters
We use delta debugging, Bayesian optimization, and decision tree

ptimization in our evaluation. Given the fact that program running
ime varies across the programs being evaluated, we put a tryout
imit of 100 for all programs tested across all three algorithms, in-
tead of using a total time limit. Algorithms may finish before the
ryout limit. Parameters for Bayesian optimization are n_calls=100,
_initial_points=10, and noise=‘‘Gaussian’’, and param-
ters for decision tree optimization are n_calls=100, n_initial_
oints=10, acq_func= ‘‘LCB’’, kappa=1.6, base_

stimator=‘‘RF’’.

8 
.1.3. Evaluation environment
We use a workstation computer with two 14-core Intel Xeon E5-

694v3 CPUs and 32GiB of RAM, running Ubuntu 22.04. We use Clang
6.0.6 with OpenMP 5.1 support as the compiler for both source-to-
ource code transformation. We use both gcc (Rodinia, CLOUDSC) and
lang (others) to compile the original programs and their mutated
ariants, to demonstrate the adaptability of our tool to different com-
ilers. Using OpenMP 5.1 enables us to build programs with tiling
lauses as well.

We also ensure that performance variation is minimized between
rogram runs. We avoid CPU context switching by limiting the pro-
rams to run on hardware threads on the second CPU by forcing the
askset -c 14-27 command in FAROS. Hardware quiescing, as
efined by [35], is also performed to reduce performance fluctuations,
uch as turning off both simultaneous multithreading and dynamic
requency scaling.

As for running time statistic collection, each mutated variant is run
times and use the minimum running time as the program running

ime 𝑇 . As a comparison, we also record the average running time for
ach tryout and evaluate if there is any possible discrepancy between
verage and minimum running time, but this statistic is not used as
he fitness function output for optimization algorithms. We use the
inimum running time as the output of the fitness function because as

tated in [35] it is best at rejecting noise introduced by the evaluation
nvironment, since any running time higher than the minimum must
e due to such noise. However, we still measure speedup for average
unning time to evaluate how performance variability affects running
ime across all programs.

.2. Speedup discovered by Muppet

Even though we take various measures to reduce performance vari-
bility in our evaluation system, it is still not completely removed.
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Fig. 4. The number of tryouts used by each algorithm in Muppet to terminate the optimization algorithm (maximum is 100).
Therefore, to determine if a mutated program variant shows speedup,
we use the 1% threshold. If among the 3 runs, the time improvement
between the minimum running time or between the average running
time is less than 1%, we do not consider the current subset of mutations
as speedup-inducing.

The time improvement discovered by all three algorithms with Mup-
pet is shown in Table 2, where columns 2–4 show the time improvement
when comparing the minimum running time of the best variant against
the original, and columns 5–7 show the time improvement for the
average running time. Our evaluation shows that there are 75.9% of
programs (22 out of 29 programs; in which there are 18 out of 25
benchmark programs and 4 out of 4 scientific applications) in which
delta debugging can find a subset of mutations that, when applied, can
cause speedup while maintaining the correctness of the program. The
other 7 programs show negligible (<1.01x) or no speedup, as shown in
red background in Table 2. The largest speedup observed is from the
hotspot benchmark in Rodinia, with a 257.59% time improvement
or 3.57x speedup. Three other benchmark programs have over 1.1x
speedup (lud and nn in Rodinia, and MG in NPB-CPP).

On the other hand, both Bayesian optimization and decision tree
optimization find the same number of programs—72.4% (21 out of 29
programs) in which a subset of mutations is found to induce speedup.
They also find one more program, HPCG, with > 1.1x speedup, com-
pared to delta debugging. The programs with discovered speedup are
the same across three algorithms, except in SP where delta debugging
finds a subset of mutations that cause speedup, but the other two
algorithms cannot.

Next, we compare the speedup discovered in individual programs
by the three algorithms. Even though the speedup discovered by these
algorithms looks roughly the same for a majority of programs, after
comparing speedup for all programs, we find that in the 21 programs
in which all algorithms find speedup in average running time, delta de-
bugging can only find the maximum speedup among three algorithms in
2 programs, while Bayesian optimization and decision tree optimization
finds the maximum speedup in 10 and 9 programs respectively. This
shows that Bayesian optimization and decision tree optimization are
slightly superior in finding the maximum speedup (when they can find
any speedup at all). Also interesting to note, in some programs, such as
backprop and LULESH, the speedup discovered for average running
time is higher than the speedup discovered for minimum running time,
9 
which may suggest a reduction in performance variability in mutated
program variants.

Results: Of all 29 programs tested, delta debugging can discover
a subset of mutations that cause speedup in 22 (75.9%) of
them; Bayesian optimization and decision tree optimization can
discover speedup in 21 (69%) of them. The highest speedup
discovered is 3.57x in hotspot. Bayesian optimization and de-
cision tree optimization are slightly better than delta debugging
in finding the highest speedups.

5.3. Time comparison between different algorithms

The time complexity of all algorithms in Muppet is defined in Sec-
tion 3.4.1 but they are all subject to performance variability in the
fitness function which in Muppet is the measured running time. There-
fore it is preferable to look into the actual performance of these
algorithms in programs tested.

We collect information on the number of total tryouts attempted
for each program by each algorithm with the 100 tryout limit, and the
statistics are shown in Fig. 4. For programs with a smaller amount of
possible mutations, such as most benchmarks in Rodinia except my-
ocyte and particlefilter, delta debugging can terminate before
100 tryouts. Even for NAS Parallel Benchmarks, there are still programs
like FT and SP that terminate early. Meanwhile, for the other two
algorithms, only 2 (hotspot and nn in Rodinia benchmarks) out of 29
programs terminated before 100 tryouts. This shows delta debugging is
better than the other two algorithms in total time used when all three
algorithms can find mutations that cause speedup in a program. In total,
in 21 out of 29 programs, delta debugging uses fewer tryouts to finish
its algorithm. In the remaining 8 programs, all algorithms terminate at
the 100 tryout limit.

Our observation of logs shows that even when speedups can be
discovered in relatively few tryouts for both BO and FO, the algorithms
do not terminate and they continue to look for the next input that
causes greater speedup. This is likely because of the noisy nature of the
fitness function introduced by software and hardware environments.

Next, we evaluate how many tryouts it takes for different algorithms
to first discover a subset of mutations that cause a non-negligible
speedup. Fig. 5 shows the maximum speedup discovered by each algo-
rithm for 6 programs over time. For the two programs in the top row,
hotspot3D and MG, all three algorithms find a subset of mutations
that cause roughly the same amount of high speedup, even though
it takes decision tree optimization more tryouts to achieve that. For
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Fig. 5. Time lapse graphs showing the speedup discovered for selected programs by Muppet, using different algorithms.
the two programs in the middle row, CoMD, and LU, delta debugging
uses fewer tryouts to find a subset of mutations that cause relatively
high speedup, but eventually, Bayesian optimization and decision tree
optimization catch up and find a subset of mutations that has an even
higher speedup. For HPCG, Bayesian optimization and decision tree
optimization find much higher speedup than delta debugging almost
immediately and even improved their highest speedup throughout the
process. The findings for these three programs are consistent with
Section 5.2. Lastly, we look into an example SP where only delta
debugging finds speedup. It takes delta debugging almost 20 tryouts
to find the first subset that contains the speedup-inducing mutations.
Before that, delta debugging can only find subsets of mutations that
slow down the program.

Results: In 21 out of 29 programs, delta debugging can finish
its search algorithm faster than both Bayesian optimization and
decision tree optimization. For the other 8 programs, Muppet
terminates at the 100 tryout limit. However, the other two
algorithms, after more tryouts, can usually find the same or even
higher speedup, except for SP.

5.4. Analysis of mutations found by different algorithms

Next, we look at the subset of mutations that cause the highest
speedup found by each algorithm. The number of possible mutations
for each program, and the number of remaining mutations in those
10 
subsets are shown in columns 8–11 in Table 2. Note that except in
programs like hotspot or hotspot3D where the number of possible
mutations itself is small, the number of remaining mutations in the
subset of mutations found by delta debugging is always much smaller
than both Bayesian optimization and decision tree optimization. Since
we know from Section 5.2 that delta debugging is slightly inferior when
finding a subset of mutations that cause maximum speedup, it is likely
that the mutations not included in the subset found by delta debugging
causes minor speedup that contributes to the maximum.

Since the number of mutations found by delta debugging is small,
next we look into them for some individual programs with the highest
speedups discovered to find out what kind of mutations we can find
that cause significant speedup. We achieve this by looking into the
runtime logs of delta debugging. In hotspot3D, the mutations that
cause speedup consist of a firstprivate clause at the omp parallel
directive in the computeTempOMP function, and some SIMD directives
in the multiple-dimension loop. In MG, two tiling mutations, when
applied to the parallelized loops in functions psinv() and resid()
induce 1.03x and 1.08x speedup, while some other mutations cause
minor speedup.

Lastly, we also look into SP, a program where only delta debugging
finds speedup. The runtime log of both Bayesian optimization and
decision tree optimization shows that a lot of subsets of mutations these
algorithms generate slow down the program, sometimes the running
time is longer by as much as 25%. These two algorithms would likely
take significantly more than 100 tryouts to eliminate all mutations with
negative speedup, while delta debugging quickly isolates the 4 out of

870 mutations that cause speedup with only 60 tryouts. These few
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mutations are from SIMD and tiling mutations in the first two parallel
loops in the lhsz() function. This shows that delta debugging is
superior when there are many mutations that slow down the program.

Results: Among three algorithms, delta debugging isolates muta-
tions causing significant speedup most quickly. Investigation into
mutations that cause the highest speedups in programs evaluated
shows that tiling mutations cause some of the most significant
speedups discovered, while other mutations also contribute.

.5. Discussion of results and limitations

Our evaluation shows that delta debugging is the fastest among all
lgorithms while discovering speedups in more programs tested. How-
ver, Bayesian optimization and decision tree optimization discover the
ighest speedups. Therefore, the choice between algorithms depends on
he intended purpose of the end user. In a time-limited situation, it is
referable to use delta debugging to discover mutations that result in
peedup; the other two algorithms are more suitable in situations where
inding a speedup as high as possible is a priority.

The experimental evaluations in this paper are performed with
rograms that are compiled with a fixed compiler and optimization
lags, both for the original program and its mutated variants. We also
se fixed problem sizes and input files for all programs. Even though
e use different compilers to evaluate the performance of evaluated
rograms and the problem sizes for our programs are varied, we cannot
nsure that the mutations discovered with Muppet would also induce

the same amount of speedup when either the compiler, optimization
flags or runtime parameters are changed; the speedup may become
larger or smaller. It is also possible that under different environments,
a new performance hotspot may emerge so that running Muppet in such
n environment would return different mutations to achieve speedup.
urthermore, our evaluation is performed on a workstation with a lim-
ted number of CPUs and cores. Using different hardware (CPU, RAM,
tc.) or using OpenMP offload may also change the speedup and/or the
utations discovered. Nonetheless, our approach is compatible with

ny C/C++ compiler in any hardware and software environment, and
he mutations discovered are portable across compilers.
Muppet is a dynamic tool that relies on mutation testing and it does

ot perform static performance modeling, nor does it perform instru-
entation. The Mutation Generator, Translator, and the optimization

lgorithm take up negligible time during the running of Muppet, thus
he running time of Muppet can be approximated as 𝑇 ⋅𝐼 where 𝑇 is the

running time of the original program and 𝐼 is the number of tryouts,
differed by algorithms. Thus the running time of Muppet is linearly
orrelated with 𝑇 , and would be much longer when 𝑇 is larger, such
s when the program has more possible OpenMP mutations, mutations
hat significantly slow down the mutated variant such as those in SP
escribed in Section 5.4, and/or when the program is run with larger
roblem sizes. Even with HPCG, it takes Muppet 5.5 h to complete
unning with Bayesian optimization (4 h with delta debugging) on the
eference computer; while its original program only runs for 15.6 s. A
ombination of mutation testing and heuristics from program analysis
ay be needed to improve the search performance of Muppet.

The efficacy of Muppet also varies due to factors in program source
code.Muppet is a source-level approach; this means that some mutations
may already be applied manually by software developers and are no
longer possible mutations as seen by Muppet. The amount of parallelism
involved in the mutations may impact its efficacy as well, according
to Amdahl’s Law [36]. However, our experimental evaluation shows
that Muppet can still assist developers in finding previously unknown
optimization opportunities, even in widely used, long-established per-
formance benchmark programs such as HPCG. Muppet can also be
useful at finding optimization opportunities when migrating programs
 t
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to newer OpenMP versions, as shown in examples like MG where tiling
mutations that improve performance are discovered.

Lastly, due to time limitation, and given the fact that IR-level com-
piler optimizations are possibly already integrated into the compilers
available, a comprehensive comparison between Muppet and IR-level
ompiler optimizations is not performed. As stated in Section 1, since
uppet is a portable, source-level approach, it can and should be used in

ddition to compiler optimizations. Software developers can use Muppet
to discover and apply mutations into their source code to speed up their
programs and avoid leaving optimization opportunities on the table,
regardless of the utilized compilers and their optimizations, which may
be specific to a compiler and thus not portable.

6. Related work

In the previous paper [26], we proposed an initial version of the
approach of using mutation testing to optimize OpenMP program per-
formance. In this paper, we expand on the initial version in that
we introduce more mutations, one more optimization algorithm with
decision tree optimization, and evaluate the efficacy of the approach
in a more comprehensive methodology.

Mutation Testing. mutation testing has already been proposed to
dentify correctness defects [14]. The assumption in mutation testing
s that a syntactic change (a mutant) can help discover programs’
efects. Mutation testing, however, has not been applied deeply in HPC
rograms and on performance defects. Some attempts to build mutation
esting for cloud systems have been reported [37]. Mutation operators
i.e., syntactic changes) have been proposed to reveal faults in small-
ize MPI programs [38]. With the increased use of LLVM, researchers
re exploring the support of mutation testing in LLVM [39]. To the best
f our knowledge, the only work that considers mutation testing for
erformance is [15]. However, this work does not consider parallelism
nd mutations in numerical (floating-point) code—these two aspects
re critical to HPC applications. To the best of our knowledge, we are
he first to explore using mutation testing for performance in OpenMP
cientific codes.
General Auto-tuning. There are many past works on auto-tuning

echniques. Typical examples include ATLAS [40], Active Harmony
41], FFTW [42], POET [43], CHILL [44], GEIST [45], OpenTuner [46],
LTune [47], Apollo [48,49], and Dutta et al. [50,51]. Their common
heme is that they tune compile-time, such as tiling, or runtime pa-
ameters, such as the number of threads, presupposing a given source
ode representation of a program. Typical search algorithms for tuning
hey propose include random, grid, or Bayesian search, or various
achine learning-based search models. By contrast, Muppet mutates the

ource code of the program, which exposes a large, combined set of
oth source code modifications as compile-time parameters and their
ossible configurations as runtime parameters to tune for. Furthermore,
uppet automates the generation of tuned source code variants without

ser intervention and it is the first to propose the delta debugging
earch algorithm for tuning. Integrating machine-learning techniques
or fast searching in Muppet is an interesting future extension.

A number of papers research domain-specific tuning using code
eneration, alternate data layouts, or algorithmic parameters, such
s [52–56] for linear algebra kernels and [57–60] for stencils. Those ap-
roaches require users to express the programs in specialized domain-
pecific languages amenable to tuning, which limits their generality.
uppet tunes unaltered, user-provided, general OpenMP code to gener-

te tuning source code variants and optimizing runtime parameters.
Auto-tuning OpenMP. Specifically on OpenMP, Adaptive OpenMP

61,62], Sreenivasan et al. [63] propose OpenMP language extensions
o support auto-tuning on OpenMP regions, such as scheduling policies
f parallel loops, number of threads or teams. Those approaches re-
uire significant refactoring of the code and domain-specific knowledge
rom the programmer to successfully integrate tuning extensions and
heir possible configuration parameters in their OpenMP code. Instead,
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Muppet treats source code modifications as a tunable parameter and
independently explores the runtime configuration space.

Bliss [64] proposes probabilistic Bayesian optimization to tune hard-
ware (core frequency, hyperthreading) and software execution pa-
rameters (OpenMP threads, algorithmic alternatives) for the whole
application, specified by the user. Bliss does not modify the program’s
source code and tunes all regions in unison, by contrast,Muppet both en-
ables source code modifications and specializes tuning to each region,
since mutations are region-specific.

Scalable Record-Replay [65] is a mechanism that extracts the LLVM
IR of OpenMP GPU target region kernels to tune for each kernel
in parallel the GPU launch bounds as compile-time parameters, by
modifying the IR to re-compile, and the number of threads/teams as
runtime parameters. Performing the kind of mutations in Muppet on
LLVM IR is challenging compared to source code, which motivates
our choice of a source code mutation tool. Nevertheless, the idea of
extracting OpenMP regions and tuning them independently is a possible
extension to Muppet to speed up search time.

7. Conclusion

We presented Muppet, a novel application of mutation testing aimed
at improving the performance of OpenMP programs. Muppet uses dif-
ferent search algorithms to apply and compose program mutations to
reduce application execution time. Because program transformations
are performed at the source level, Muppet’s mutations are transferable
across different OpenMP implementations and compilers. We demon-
strate that Muppet is capable of identifying mutations that improve
performance in 75.9% of the evaluated programs achieving a maximum
speedup of 3.57x.

In the future, we plan to extend Muppet to automatically update
OpenMP code bases with the latest OpenMP features that improve
performance while maintaining correctness. Currently, it is the respon-
sibility of the code maintainer to manually update their code base to
use newly available OpenMP features, which require significant manual
efforts. The source code and data of Muppet are publicly available at
https://github.com/LLNL/MUPPET/.
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